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Abstract

Background: The detection of circulating nucleic acids has long been explored for the non-invasive diagnosis of a variety of clinical

conditions. In earlier studies, detection of circulating DNA has been investigated for the detection of various forms of cancer. Metastasis

and recurrence in certain cancer types have been associated with the presence of high levels of tumor-derived DNA in the circulation. In

the case of pregnancies, detection of fetal DNA in maternal plasma is a useful tool for detecting and monitoring certain fetal diseases and

pregnancy-associated complications. Similarly, levels of circulating DNA have been reported to be elevated in acute medical emergencies,

including trauma and stroke, and have been explored as indicators of clinical severity. Apart from circulating DNA, much attention and

effort have been put into the study of circulating RNA over the last few years. This area started from the detection of tumor-derived RNA

in the plasma of cancer patients. Soon after that, detection of circulating fetal RNA in maternal plasma was described. Plasma RNA

detection appears to be a promising approach for the development of gender- and polymorphism-independent fetal markers for prenatal

diagnosis and monitoring. This development also opens up the possibility of non-invasive prenatal gene expression profiling by maternal

blood analysis. Besides circulating DNA and RNA in plasma and serum, cell-free DNA in other body fluids, such as urine, has been

detected in patients with different clinical conditions. Regardless of the sources of cell-free DNA for clinical use, the amount is frequently

scarce.

Methods: Technical advancements in detecting free DNA have been made over the years.

Conclusions: It is likely that further developments in the field of circulating nucleic acids will provide us with new diagnostic and

monitoring possibilities over the next few years.

D 2005 Elsevier B.V. All rights reserved.
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1. History of circulating nucleic acids

The discovery of cell-free nucleic acids in the circulation

was first reported in 1948 by Mandel and Metais, who were

able to detect nucleic acids from human plasma [1]. This

finding was remarkable but not widely recognized initially.

For a long period of time, studies on circulating DNA were

mainly focused on autoimmune diseases, such as rheuma-

toid arthritis and systemic lupus erythematosus, in which

high levels of circulating DNAwere detected in the serum of

patients [2,3].

The potential application of circulating nucleic acids in

the diagnosis and prognosis of cancer was first demon-

strated in 1977, when high levels of circulating DNA were

detected in the serum of cancer patients, and the levels of

circulating DNA decreased when the patients responded to

radiotherapy [4]. In 1989, Stroun et al. detected circulating

DNA with neoplastic characteristics in the plasma of cancer

patients [5]. A few years later, tumor-derived oncogene

mutations were detected in the plasma or serum of patients

with pancreatic cancer [6], myelodysplastic syndrome or

acute myelogenous leukemia [7]. These findings confirmed

that tumor-derived DNA could be isolated from the plasma

or serum of cancer patients.

Besides cancer detection and monitoring, studies of

circulating nucleic acids have opened up a new avenue

for non-invasive prenatal diagnosis. This was made

possible by the successful detection of fetal-derived Y-

chromosomal sequences in maternal plasma and serum by

Lo et al. in 1997 [8]. In addition to these applications,

circulating nucleic acids have been demonstrated to be

potentially useful in monitoring trauma [9,10] and stroke

patients [11].
2. Application of circulating DNA

2.1. Cancer testing

Cancer development involves an accumulation of genetic

and epigenetic changes, such as point mutations, chromoso-

mal rearrangements, microsatellite instability, and promoter

hypermethylation. After the first demonstration of detectable

tumor-associated DNA sequences in the plasma of cancer

patients by Stroun et al. in 1989 [5], different forms of tumor-

derived circulating DNA were detected in patients with

various types of cancers by different research groups.
In 1994, detection of N-ras gene mutations was reported

in the plasma of patients with myelodysplastic syndrome or

acute myelogenous leukemia [7], and that of K-ras gene

mutations was reported in the plasma or serum of patients

with pancreatic cancer [6]. Later, K-ras gene mutations were

found in the circulating DNA and corresponding tumor

tissues of pancreatic cancer patients [12–14]. In a report

from Sorenson K-ras mutations were found in the plasma/

serum of colorectal and pancreatic carcinoma patients [15].

K-ras mutations in the plasma or serum of colorectal cancer

patients were also described by Kopreski et al. [16,17]. In

some of these studies, persistence of mutated circulating K-

ras sequences was related to recurrence or a progressive

disease [14,18,19].

Chromosomal rearrangements represent another class of

events that could occur in certain neoplasia. Frickhofen et

al. demonstrated that rearranged Ig heavy chain DNA

sequences are detectable in the plasma or serum from

patients with non-Hodgkin’s lymphoma or acute B-precur-

sor lymphoblastic leukemia [20].

Microsatellite instability, in particular, loss of hetero-

zygosity (LOH), is frequently found in solid tumors.

Genetic changes corresponding to those found in tumor

tissues were detected in the circulation of patients with

various malignancies. Detection of microsatellite alterations

in plasma DNA and serum DNAwas first described in small

cell lung cancer (SCLC) patients [21], and head and neck

cancer patients [22], respectively. Subsequently, micro-

satellite alterations have been identified in the plasma or

serum of patients suffering from clear cell renal carcinoma

[23], colorectal cancer [24], non-small-cell lung cancer

(NSCLC) [25], melanoma [26–28], ovarian cancer [29],

breast cancer [30,31], lung cancer [32], acute myeloid

leukemia and myelodysplasia [33]. In many of these studies,

the levels and persistence of the microsatellite alterations

were found to have prognostic correlations with disease

progression or recurrence.

Promoter hypermethylation is another common molec-

ular event that occurs in cancer development. Two groups

simultaneously reported the detection of aberrantly methy-

lated circulating DNA in cancer patients, using methylation-

specific polymerase chain reaction (MSP) [34,35]. Other

groups subsequently confirmed these studies and extended

the spectrum of tumor types applicable to such a detection

strategy [36–42]. The development of real-time MSP

further allows a quantitative dimension in a number of such

studies [43].
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Detection of viral sequences was reported in the

circulation of patients suffering from neoplasms associated

with viral infections. Examples include the detection of

Epstein–Barr virus (EBV) DNA in the serum of patients

with nasopharyngeal carcinoma (NPC) [44], EBV-associated

Hodgkin’s disease [45,46], and post-transplant lymphopro-

liferative disease (PTLD) [47]. In addition, apart from tumor

detection at presentation, such an approach also has

implications for cancer monitoring and prognostication in

patients with NPC [48–53] and EBV-associated lymphoid

malignancies [54]. Besides EBV-associated malignancies,

quantitative detection of human papillomavirus (HPV) DNA

sequences in patients’ sera was found to be a potential

marker of early metastatic disease in HPV-associated head

and neck squamous cell carcinoma (HNSCC) [55]. More-

over, detection of HPV DNA in plasma of cervical cancer

patients was associated with disease metastasis [56].

2.2. Prenatal diagnosis

Conventional prenatal diagnostic procedures, such as

chorionic villus sampling (CVS) or amniocentesis, impart

a risk of fetal loss. The discovery of fetal DNA in

maternal plasma and serum has opened up new oppor-

tunities in non-invasive prenatal diagnosis and monitoring

[8]. By detecting Y-chromosome signals in maternal

plasma with real time PCR, Honda et al. were able

to achieve a 100% sensitivity from the fifth week of

gestation [57]. Circulating fetal-associated DNA is of a

higher abundance than fetal cells in the maternal circu-

lation [58], and the post-partum clearance was shown to be

rapid [59].

Fetal DNA in maternal plasma has been shown to be

potentially useful for the prenatal diagnosis of certain

neurological disorders [60], fetal chromosomal aneuploidies

[61], sex-linked disorders [62], and fetal rhesus D (RhD)

status [63]. Through the detection of paternally inherited

genetic traits in maternal plasma, non-invasive exclusion of

congenital adrenal hyperplasia was described by various

groups [64,65]. In addition, Chiu et al. demonstrated an

approach for the non-invasive exclusion of h-thalassemia by

maternal plasma analysis [66]. Furthermore, fetal RhD

genotyping from maternal plasma [67,68] has become an

adopted protocol in routine prenatal diagnosis in several

centers (e.g., see http://www.bloodnet.nbs.nhs.uk/ibgrl/

Reference%20Services/RefSer_genotyping.htm).

Quantitative aberrations of fetal DNA in maternal plasma

have been reported for various disease conditions, such as

preterm labor [69,70], fetal chromosomal aneuploidies [71–

73], preeclampsia [70,74–80], fetal–maternal hemorrhage

[81], polyhydramnios [82], and invasive placentation

[70,83]. However, these studies were based primarily on

the detection of Y-chromosomal sequences in maternal

plasma, an approach which has thus far limited their

applications to the 50% of pregnancies involving male

fetuses (Table 1).
Through the study of a single-nucleotide polymorphism

(SNP) within a differentially methylated locus IGF2-H19,

Poon et al. were able to detect fetal-derived maternally

inherited alleles in maternal plasma [84]. This work

represents the first use of epigenetic fetal markers for non-

invasive prenatal diagnosis. Such an approach holds

promise for the development of new gender- and poly-

morphism-independent fetal DNA markers for detection in

maternal plasma.

2.3. Traumatology and stroke

Circulating DNA concentrations in plasma have been

reported to be correlated with the severity of injury in

trauma patients [9]. Another demonstration came from the

correlation between plasma DNA levels and the severity

of stroke [11]. In addition, high plasma DNA levels were

reported to be associated with hospital mortality. With the

development of rapid cycle PCR technology [85], such

an approach may potentially be used in the emergency

room.
3. Application of circulating RNA

3.1. Cancer testing

Using reverse transcriptase (RT) PCR, tumor-derived

RNA was first reported to be detectable in plasma or serum

of cancer patients with NPC [86] and melanoma [87].

Tumor-associated mRNA of various telomerase components

was later shown to be detectable in serum or plasma of

patients with breast cancer [88], colorectal cancer, follicular

lymphoma [89] and hepatocellular carcinoma [90]. In

addition, cytokeratin 19 (CK19) and mammaglobin mRNA

was detectable in the plasma of breast cancer patients, and

was associated with poor prognosis [91]. CK19 and

carcinoembryonic antigen (CEA) RNA was detected in the

plasma of colorectal cancer patients and was believed to be

associated with advanced stages [92]. As another example,

detection of beta-catenin mRNA in plasma of colorectal

carcinoma and adenoma patients has recently been achieved

and may serve as another potential marker for non-invasive

cancer monitoring [93].

3.2. Prenatal diagnosis

Soon after the successful detection of tumor-derived

RNA in plasma/serum of cancer patients, the presence of

fetal RNA in maternal plasma was reported [94]. Further

development in this area demonstrated that placental-

derived mRNA species, such as human placental lactogen

(hPL), the beta-subunit of human chorionic gonadotropin

(hhCG), and corticotrophin-releasing hormone (CRH), are

detectable in maternal plasma, and their expression is

correlated with the corresponding protein product levels

 http:\\www.bloodnet.nbs.nhs.uk\ibgrl\Reference%20Services\RefSer_genotyping.htm 


Table 1

Quantitative assessments of fetal DNA in maternal plasma/serum for pregnancy-associated complications

Complication Normal mediana

(number of cases)

Disease mediana

(number of cases)

Gestational age

(weeks)

Body

fluid

Reference

(year)

Preterm labor 65.8 copies/ml (17) 124.8 copies/ml (13) 26–34 Plasma [69] (1998)

15.9 copies/ml (77) 44.6 copies/ml (35) 25–36 Plasma [70] (2004)

Trisomy 21

Boston samples 23.3 (19) 46.0 (7) 12–21 Plasma [71] (1999)

Hong Kong samples 16.3 (18) 48.2 (6) 16–21 Plasma [71] (1999)

83.1 (29) 185.6 (15) 14+4 Plasma [72] (2000)

Trisomy 18 83.1 (29) 95.9b (6) 14+4 Plasma [72] (2000)

40.3 (24) 31.5b (5) 15–20 Serum [73] (2003)

Trisomy 13 83.1 (29) 213.2 (3) 14+4 Plasma [72] (2000)

40.3 (23) 97.5 (5) 15–20 Serum [73] (2003)

Preeclampsia 76 (20) 381 (20) 27–41 Serum [74] (1999)

22.0 (33) 41.9 (18) 11–22 Plasma [75] (2001)

332.82 (46) 1599.07 (39) 28–42 Plasma [76] (2001)

227 (10) 521 (7) 30–38.3 Plasma [77] (2002)

128.5 copies/ml (40) 422.9 copies/ml (10) 19–25 Plasma [78] (2002)

191 (20) 486 (9) 29–36 Plasma [79] (2003)

22.4 copies/ml (50) 173.2 copies/ml (15) 29–38 Plasma [70] (2004)

Han Chinese in Lhasa 90 (21) 810 (15) 35–41 Plasma [80] (2004)

Tibetans in Lhasa 76.5 (27) 859.54 (11) 36–40 Plasma [80] (2004)

Fetal growth restriction 191 (20) 141b (9) 29–36 Plasma [79] (2003)

Fetal–maternal hemorrhage Before ECVc 296 copies/ml (45) After ECVc 369 copies/ml (45) 36+ Serum [81] (2000)

Polyhydramnios 404 (14) 749.2 (1) 33+ Plasma [82] (2000)

Invasive placenta (placenta previa) 184.2 (13) 294.3 (18) 31–36 Plasma [83] (2002)

37.0 copies/ml (69) 167.7 copies/ml (6) 27–36 Plasma [70] (2004)

a Unless otherwise stated, median fetal DNA concentration is expressed as genome-equivalents/mL of maternal plasma or serum (Y-chromosome).
b No significant difference.
c ECV=external cephalic version.

Fig. 1. Outline of strategy used for the systematic identification of

pregnancy-specific placental expressed mRNA markers in maternal plasma.

Paired placental tissues and maternal whole blood samples are collected and

subjected to oligonucleotide microarray analysis. Transcripts with increased

expression in the placental tissues relative to whole blood are selected and

their detectability in maternal plasma and pregnancy specificity are evaluated

by QRT–PCR on maternal plasma. Reproduced from: Tsui NBY, J Med

Genet 2004;41:461–7 with permission from the BMJ Publishing Group.
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[95]. Using chromosome 21-encoded mRNA, Oudejans et

al. detected these placental-derived transcripts in maternal

plasma [96]. These targets have implications of being

gender- and polymorphism-independent fetal markers for

non-invasive prenatal diagnosis. Potential application of

circulating fetal RNA was demonstrated by a significant

difference in plasma mRNA levels of CRH between

preeclamptic and normal pregnancies [97]. Furthermore,

using expression microarray technology, Tsui et al. estab-

lished a systematic approach in generating new placental-

derived mRNA markers for non-invasive gene expression

profiling [98] (Fig. 1). Transcripts identified by this

approach are pregnancy-specific, as shown by the clearance

results (Fig. 2).

3.3. Stability of plasma RNA

With the well-known instability of RNA species,

detection of circulating RNA was perhaps rather surprising.

In this regard, it has been proposed that circulating RNA

might be contained in apoptotic bodies, hence being

protected from degradation by nucleases [99,100]. One line

of empirical evidence was provided by Ng et al., who

subjected plasma samples through filters with different pore

sizes [101]. Results showed the presence of filterable and

nonfilterable mRNA species in plasma. Tsui et al. further

demonstrated the different stability of endogenous and



Fig. 2. Clearance of placental mRNA from maternal plasma after delivery.

Concentrations of (A) TFPI2 mRNA, (B) KISS1 mRNA, and (C) PLAC1

mRNA in maternal plasma before delivery and at 24 h after delivery were

measured by QRT–PCR. Each line (symbol) represents one plasma sample

obtained from one subject. Reproduced from: Tsui NBY, J Med Genet

2004;41:461–7 with permission from the BMJ Publishing Group.
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exogenous RNA in plasma [102]. The stability of circulat-

ing RNA enables the RNA targets to become practical

markers for non-invasive analysis.
4. Cell-free nucleic acids in urine

In addition to circulating nucleic acids in plasma and

serum, DNA in urine represents another potential tool in

molecular analysis.
For example, Eisenberger et al. detected microsatellite

alterations identical to those found in the primary tumor in

serum and urine of renal cancer patients [103]. Tumor-

derived DNAwas also detectable in urine, as well as plasma

and serum, of patients who suffered from prostate carci-

noma [104,105] and bladder cancer [106]. Zhang et al.

demonstrated the detection of male donors’ DNA in female

renal transplant recipients using Y-chromosomal sequence

as a marker for donor-derived DNA. Increase in urinary

DNA concentration during acute rejection was observed and

was followed by a rapid return to normal level with anti-

rejection treatment [107,108]. The potential use of cell-free

DNA in organ transplant monitoring was also illustrated in a

study of detecting donor-specific DNA in the plasma of

kidney and liver transplant recipients [109].

Botezatu et al. demonstrated that the kidney barrier is

permeable to polymeric cell-free DNA by detecting male-

specific sequences in the urine of females receiving male

blood transfusion or carrying a male fetus [110]. Moreover,

mutations of the K-ras gene were detected in the urine of

patients with colon and pancreatic cancers. Su et al. further

investigated the origin and size of cell-free DNA in body

fluids by developing methods to enrich for non-cell-

associated DNA fragments of between 150 to 250 bp

[111]. Identical K-ras mutations were present in low

molecular weight urine DNA and the corresponding tumor

tissue DNA of colorectal carcinoma patients [112].
5. Development of diagnostic methods

With over five decades of development, important

technical advancements have been made towards the study

and diagnostic applications of circulating nucleic acids. Early

methods such as radioimmunoassay could only detect nano-

gram quantities of DNA [4]. Such relative insensitivity might

have contributed to the low diagnostic values of these assays.

With the introduction of PCR, picogram quantities of DNA

could be detected. The robustness of microsatellite analysis

has been improved by fluorescence-based allelotyping

techniques involving capillary electrophoresis [32]. In most

of the studies on viral DNA detection in cancer patients, a

positivity of over 50% was obtained. Quantitative real-time

PCR further increased the sensitivity to over 90% [48,52]. In

addition, detection of fetal DNA in maternal plasma by real-

time PCR can achieve a close to 100% sensitivity and

specificity for applications involving targets like Y-chromo-

some markers and the RhD gene [68]. However, effective

anti-contamination measures should be strictly imposed since

the sensitivity of quantitative PCR is high.
6. Rapid testing

Rapid testing involves fully automated systems in nucleic

acid isolation, PCR mixture preparation, and rapid thermal
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cycling profile, preferably with no post-PCR processing. As

there are many parallels between the detection of human-

derived plasma DNA/RNA and the detection of viral nucleic

acids, we have cited below a number of studies aimed

primarily for viral nucleic acid detection, but with applic-

ability to the extraction and detection of human-derived

plasma nucleic acids.

In a study to compare manual and automated (MagNA

Pure LC) plasma nucleic acid isolation methods [113], Alp

et al. observed a higher detection rate of viral RNA isolated

from patients’ plasma by the automated system (23/35,

65.7%) than by conventional manual method (20/35,

57.1%). When both of the methods showed a positive

detection, significantly higher copy numbers were detected

by the automated system.

Using the LightCycler technology on real-time quantita-

tive PCR assays, Gueudin et al. quantified human immu-

nodeficiency virus RNA (HIV-1 group O) in 40 out of 48

(83.3%) plasma samples [114]. Changes in viral load during

treatment were observed in serial samples. The authors have

claimed that despite the high initial cost of acquiring the

device, the per-sample cost of this assay is low, making it

suitable for use in endemic zones. In a study by Stocher et

al., a detection system of DNA for 5 human herpes viruses

in a single LightCycler run was successfully developed

[115]. Viral DNAs were spiked into cerebrospinal fluid,

serum or plasma. The detection limits were found at 500 or

250 viral DNA copies/ml, depending on the PCR assay and

specimen type used. Another example of LightCycler-based

real-time PCR is the quantitative detection of EBV DNA in

unfractionated whole blood, serum, or plasma [116]. As

stated by the authors, this approach is rapid, and the closed-

tube system eliminates the risk of PCR product carryover

contamination and the need for post-PCR processing. Due

to the efficient heat conduction with glass capillaries, small

reaction volumes, and air as heating medium, the time

needed for each PCR cycle is reduced to 15–20 s. 20 to 30

min are all that are needed for a 30- to 40-cycle PCR run.

In the following studies, automated DNA extraction

using the MagNA Pure extractor followed by LightCycler

real-time quantitative PCR were employed. In a study on

EBV DNA load monitoring in whole blood, peripheral

blood mononuclear cells (PBMCs) and plasma, the use of

whole blood and plasma for transplant patients were equally

feasible and accurate in early diagnosis of PTLDs [117]. In

the study of hepatitis B virus (HBV) DNA detection in

plasma, the detection limit was 200 HBV DNA copies/ml

[118]. In a follow-up study on the detection of human

herpes virus DNA by Stocher et al., a set of LightCycler

PCR assays complemented with a single multiple internal

control, an approach which allows for monitoring sample

adequacy, was employed [119]. This type of setup was

found to be rapid, labor saving and suitable for the routine

diagnostic laboratory.

Loop-mediated isothermal amplification (LAMP) is a

rapid amplification method based on strand displacement
DNA synthesis with high specificity and efficiency [120].

Detection limit has been reported to be down to a few

copies of the target. Its specificity is conferred by the

recognition of the target sequence by six independent

sequences in the initial stage and four independent

sequences during the later stages of the LAMP reaction,

which produces a product of a stem-loop DNA structure.

Equipment required for running the reactions includes a

regular laboratory water bath or heat block, implying a

relatively low setup cost. Detection of LAMP products is

by gel electrophoresis or turbidity measurements [121].

During the LAMP reaction, a large amount of by-product

in the form of pyrophosphate ion is produced. By

measuring the turbidity of the reaction tube, real-time

monitoring of the LAMP reaction can be achieved. When

gel electrophoresis is used for detection, care should be

taken to avoid carry-over and cross-contamination.

The LAMP method has been employed in two studies on

detection of human herpesvirus (HHV) DNA in patients’

whole blood and plasma samples. For HHV-6 detection,

improved sensitivity from 50 copies per reaction to 25

copies per reaction was described. HHV-6 DNA was

detected in the plasma samples collected in the acute phase

but not in the convalescent phase, compared with the

positive detection in whole blood samples in both phases.

As a result, rapid diagnosis of active HHV-6 infection

would be possible on plasma samples [122]. For HHV-7

detection, similar results were obtained with a 60-min

LAMP reaction from plasma samples, which showed

positive detections in acute phase but not convalescent

phase [123].
7. Conclusions

The discovery of circulating nucleic acids has opened up

new possibilities for non-invasive detection and monitoring

of various disease conditions. In cancer patients, detection

and quantification of circulating nucleic acids have shown

promise for cancer diagnosis and prognosis. Maternal

plasma analysis can be used to detect or exclude certain

diseases of the fetus, and quantification of fetal nucleic acids

has the potential to be used to screen for certain pregnancy-

associated complications. Other applications include mon-

itoring following trauma and stroke, when circulating DNA

level is correlated with the severity.

With the rapid advancements in technologies, sensitivity

and specificity have been improved for the detection of both

cell-free DNA and cell-free RNA species. However, in this

high throughput era, a robust assay system with high

efficiency is of great importance. Introduction of new

methods, such as fully automated systems for nucleic acid

purification [113], together with rapid PCR systems [114]

and non-PCR amplification strategies [120], will further

facilitate high throughput molecular analysis. With such

developments, the field of circulating nucleic acids will
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likely undergo further expansion over the next few years

and new clinical applications will likely be found.
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