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1. Introduction

A (protein coding) gene is determined to be expressed in a cell
or group of cells when its transcribed messenger RNA (mRNA) or
the resulting protein product is detected. There are a wide variety
of techniques for determining and quantifying gene expression, and
many of these have substantial statistical components to them. In
this article, we review some of statistical models and methods used in
analysing gene expression data, focussing entirely on approaches quan-
tifying mRNA. The large-scale measurement of protein is under active
development, and while that too has its statistical problems, these are
too broad to be dealt with here.

Before discussing statistical matters, it will be helpful to present a
small sample of the extensive biological and technological background
to gene expression analysis.

Why do we measure gene expression? The most common experiment
is comparative: we want to compare the mRNA levels of one or more
genes in cells from different sources. Comparisons of interest include
tumour vs normal cells, cells from a specific organ in a mutant or
genetically modified organism vs cells from the same organ in a normal
organism of the same strain, and cells before and after an intervention
such as a drug treatment. Another important class is the time-course
experiments, where cells are sampled at different times, e.g. after the
administration of a drug, or as the cell cycle or development proceeds,
and interest is in temporal patterns of gene expression. Yet other
experiments focus on spatial patterns of gene expression. There are
many other kinds of gene expression experiments, essentially as many
as there are organisms, cell types and conditions of biological interest.

How do we measure gene expression? As stated above, there are
many techniques for doing so, but most rely on DNA-RNA or DNA-
DNA hybridization. This is the process through which single-stranded
DNA or RNA molecules find and base-pair with their complementary
sequences amidst a complex mixture of many molecules of the same
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kind. The terminology we adopt names the sequence representing a
gene of interest the probe, while the pool within which a complemen-
tary copy of the probe is sought is named the target DNA or RNA.
Other terminologies are the reverse of ours.

On what scale do we measure gene expression? Much of the recent
interest by statisticians in this area stems from the availability of data
sets giving expression measurements on tens of thousands of genes,
so-called microarray gene expression data. However, nylon membrane
filters with thousands of genes spotted on them have been around for
over a decade, and smaller-scale quantitative expression data for much
longer. We begin with a discussion of the first and simplest method
of quantifying RNA, as many of the features of the high-throughput
methods are already present here.

2. Low-throughput methods

2.1. Quantitative northern blots. Isolated RNA is separated ac-
cording to size by electrophoresis, and transferred by blotting to an
immobilizing matrix such as a nylon membrane. A labelled DNA probe
is incubated with the blot under conditions which promote annealing,
and the probe will then bind to the RNA molecules on the blot com-
plementary to it. This is the hybridization reaction. The result is then
imaged, either directly (e.g. by laser scanning or with the use of a CCD
camera), or indirectly, by exposing an X-ray film to the blot.

The amount of RNA can be quantified by measuring the intensity
of the signal in the image in regions corresponding to the probe of
interest. Usually control RNA is measured at the same time, typically
a gene that is thought to be expressed at a more or less constant level,
(a so-called housekeeping gene), and the expression level of the gene of
interest is then given relative to the control gene.

Although this technique has been in use for over 20 years, it has
attracted little attention from statisticians. In part this is because
low-throughput assays with simple read-outs are usually seen as outside
the domain of statistical analysis, apart from such simple matters such
as analysing replicate data. This attitude changes when the assay
becomes high-throughput, or when much more data are collected on
a given unit. These considerations lead naturally into our next topic,
which is an important development of the northern blot.

2.2. Quantitative PCR, including kinetic or real-time PCR..

The Polymerase Chain Reaction (PCR) can be used to estimate the
concentration of a particular target RNA relative to a reference. The
mRNA is converted to complementary DNA (cDNA) using the en-
zyme reverse transcriptase (sometimes abbreviated by RT), and the
result is amplified exponentially using the PCR. References are control
sequences (such as housekeeping genes) that are present in the same
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preparation of RNA as the target sequence. Quantification is achieved
amplifying the target RNA (and the reference RNA) to a more readily
detectable quantity, and by comparing the amount of amplified product
generated by the reference and the target sequence. There are many
variants. The older assays measured end-product, but the method
works better if the amplified products are measured during the ex-
ponential phase of the chain reaction, particularly if the reference and
target sequence are present in approximately equal concentrations, and
if they amplify with equal efficiency. More accurate variants involves
adding reference molecules in known amounts to a series of amplifica-
tion reactions.

A recent technique of the second kind for quantitating RNA is called
kinetic or real-time PCR. There the target and reference sequences are
amplified and the products detected in the same instrument, and the
endpoint is when the reported fluorescence passes a fixed threshold
above baseline. Note that ”real-time” here is sometimes abbreviated
by RT, and so can be confused with the same abbreviation for reverse
transcriptase. In fact kinetic PCR is really RT RT PCR! There are a
large number of different protocols, including TaqMan, and a number
of different instruments for carrying out this assay. Details can be
found in the technical notes below. Rather more statistical research
has been devoted to improving quantitifation methods for RT-PCR,
see e.g. Pfaffl (2001), but there are still many issues remaining. This
is a very fertile area for biostatisticians. I for one am getting into it,
but there is plenty of room for others.

It is important to point out here that the gene whose expression levels
we wish to measure needs to be specified in advance, indeed parts of
its DNA sequence need to be known in order to allow the preparation
of primers necessary for the PCR

3. High-throughput methods: SAGE

Serial analysis of gene expression (SAGE) is a method for the com-
prehensive analysis of gene expression patterns. It is the main quanti-
tative approach to gene expression not based upon hybridization. More
importantly, one does not need to know the sequences of the mRNA
transcripts in advance.

Three principles underlie the SAGE methodology:

i) a short sequence tag (10-14bp) contains sufficient information to
uniquely identify an mRNA transcript, provided that that the tag
is obtained from a unique position within each transcript;

ii) sequence tags can be linked together to form long serial molecules
that can be cloned and sequenced efficiently and relatively cheaply;
and

iii) a count of the number of times a particular tag is observed pro-
vides the expression level of the corresponding transcript. Thus
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we actually count here, rather than measure indirectly as with all
other technologies discussed so far.

A typical SAGE experiment would involve two sources of mRNA,
say tumour and the corresponding normal tissue. For each source a
set (called a library) of (say) 50,000 tags would be derived using the
SAGE protocol. In these two libraries there might be 20,000 distinct
(termed unique) tags observed, and for each unique tag, the frequency
with which that tag appeared in each library could be calculated. The
data for this comparative experiment are then two lists of counts, one
for each unique tag observed.

The first question a biologist asks here is: which tags are significantly
differentially represented in the two libraries? For any given tag, say
tag i, the natural null hypothesis here is Hi : the proportions of tag
i in the two libraries coincide. Rejection of this null hypothesis leads
to the conclusion that the gene corresponding to tag i is differentially
expressed between the two sources of RNA. Making an independence
assumption that might be difficult to verify, one current approach to
this question starts with the observation that under Hi, the number
of times tag i appears in library 1, say, given the total number across
the two libraries, is binomial with p = 1/2. This is the basis of a test
of Hi, and when this is done for all i = 1, ...., 20, 000, a Bonferroni
adjustment can be used. The test just described is one of a number
in use, (Audic & Claverie, 1997, Man et al, 2001). There are a range
of outstanding questions with these data including dealing with se-
quencing errors, which might be of the order of 1-3% per base in the
tags; considering the independence assumption leading to the binomial
model; and seeking a valid multiple testing correction less conservative
than Bonferroni. The difficulty is that because of the co-expression
of genes, different tag counts in a library cannot be regarded as inde-
pendent. However, the extent to which this matters is not yet clear.
When more SAGE libraries accumulate in a given context, questions
will undoubtedly arise which lead naturally to classification and clus-
ter analyses, see below in the context of microarray data. As with the
technologies outlined above, there seem to be many opportunities for
biostatistical research involving SAGE data. A general source on this
topic http://www.sagenet.org.

4. High-throughput methods: array based approaches

The principal class of high-throughput methods for quantifying gene
expression are those based on microarrays, although the term macroar-
ray is also used for the older nylon technology. Broadly speaking there
are three basic microarray technologies: nylon membrane arrays, spot-
ted arrays, and high-density oligonucleotide arrays. The special supple-
ments Nature (1999, 2002) provide a good overviews of the production
and utilisation of the last two technologies. We explain each briefly
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before turning to statistics. There we will attempt to discuss the issues
in a general way when applicable to two or more of these technologies,
and leave to the reader to consult the references for material on topics
rather more specific to the different technologies.

4.1. Different array technologies.

4.1.1. Nylon Membrane Filters. This is the oldest array technology,
but one which is still widely used around the world. A typical filter
microarray has 5, 000 complementary DNA (cDNA) clones 600−2, 400
bases in length, spotted in a grid on the membrane. Radio-labeled tar-
get cDNA derived from the mRNA of interest is hybridized to the array,
and the filter is then exposed to X-ray film and the film imaged. The
resulting digital image constitutes the raw data from the experiment.

A very high-density variant of the traditional filter-based microarray
is the oligonucleotide filter array, which can have 50, 000 spots consist-
ing of pools of 10-mers, Meier-Ewart et al, 1998.

4.1.2. Spotted cDNA Microarrays. Introduced in Schena et al (1995),
a typical spotted array consists of up to 40, 000 cDNA probes of length
600− 2, 400 bp placed in a regular pattern on a glass microscope slide.
The main advantage of the non-porous glass support is that it facil-
itates miniaturization and the use of fluorescence (rather than radio-
label) based detection. Essentially all spotted arrays use two sources
of mRNA, each labelled with its own fluorophore. These are mixed in
equal quantities and competitively hybridized to the spots on the slide.
In an obvious sense, each spotted array experiment may be regarded
as several thousand paired comparisons. Following the hybridization,
laser excitation stimulates the spots to fluoresce, and the photons emit-
ted are collected, amplified, converted to digital form and presented as
two digital images of the slide, each quantifying the amount of cDNA
on the spots labelled by one of the two fluorophores. These two digital
images are the raw data of a spotted microarray experiment.

A variant of the spotted arrays uses as probes long (60 − 75 bp)
oligonucleotides representing part of a gene or EST, Hughes et al (2001).
These are put onto the glass using an ink-jet printer device, and gener-
ally lead to higher quality data, As with the original spotted arrays, a
two-colour system is used, although the technology may well be good
enough to provide reliable single colour quantification.

4.1.3. High-Density Oligonucleotide arrays. A quite different technol-
ogy can be used to place up to 500, 000 short (25 bp) oligonucleotide
probe pairs on a small glass chip, with 11-20 of these probe pairs repre-
senting a part or all of a single gene, see Fodor et al (1991) and Lockhart
et al (1996). Each probe pair consists of a perfect match (PM) probe,
and a mismatch (MM) probe, the latter being the same as the former
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apart form a single nucleotide change (A ↔ G or C ↔ T ) in the mid-
dle (13th) position. A tagged target cRNA sample hybridizes with the
complementary oligonucleotides on the chip, and detection is via laser
excitation followed by the collection of fluorescence emission as with
spotted arrays. As with the approaches already discussed, the image
is the starting point of analysis.

5. Statistical issues

5.1. Design of experiments. The careful design of microarray ex-
periments is in its infancy. Most work to date concerns spotted array
experiments, which require more care by virtue of the paired nature of
each experiment. Also, many users of spotted arrays construct the ar-
rays themselves, whereas filter arrays and high-density oligonucleotide
arrays tend to be bought ”off the shelf”. In spotted array experiments,
there are thus two main aspects to the design question:

(i) the design of the array itself, i.e., deciding which cDNA probe
sequences to print on the slide, whether to use replicated spots
and control sequences, and how many and where these should be
printed on the slide;

(ii) the allocation of mRNA target samples to the slides, i.e., deciding
how mRNA samples should be paired for hybridization, the dye
assignments, and the type and number of replicates.

Proper experimental design is needed to ensure that questions of
interest can be answered and that this can be done accurately and
efficiently given experimental constraints, such as cost of reagents and
availability of mRNA. Designs specifically suited for the question of
interest and judicious pairing of mRNA samples for hybridization can
greatly improve the efficiency of microarray experiments by ensuring
the precise measurement of relevant effects. A number of statisticians
have been involved in these questions, but there is little literature so
far. For some initial work in this area, see Kerr & Churchill (2001), and
Yang and Speed (2002). We can expect much more published research
on this topic in the near future.

5.2. Image analysis. As explained above, the ”raw data” arising from
all microarray technologies are images: of labelled probes on a nylon
filter, a glass slide or a glass chip. There seems little doubt that the
results of downstream analyses can be appreciably influenced by the
initial image analysis, though few studies of this topic exist at present,
see Yang et al (2001b) for one such.

Three broad analysis issues can be identified with microarray im-
ages, although not all approaches proceed in this way: finding the
probe centres (registration), partitioning the pixels in the image into
probe and non-probe regions (segmentation), and assigning summary
values to probe intensity and background (quantification). Rather than
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assign pixels to probe and non-probe categories, some approaches (es-
pecially with with nylon filters) use parametric, semi-parametric or
non-parametric modelling to determine probe intensity. Once summary
values of probe intensities are calculated, there remains the question of
combining these to measure absolute or relative gene expression. With
nylon filter and spotted arrays, intensity is usually the difference of
foreground and background values, and ratios of these quantities are
the main vehicle for later analysis. In general there are many ways
of carrying out the image analysis, and several commercial and freely
available packages for doing so, see Carlisle et al (2000) for nylon filter
arrays, Yang et al (2001b) and references therein for spotted arrays,
and Schadt et al (2000) for high-density oligonucleotide arrays. Bran-
dle et al (2001) is a good overall reference, and other articles in that
volume can be consulted on this topic, and Buhler et al (n.d.) is also
useful.

In the case of high-density oligonucleotide arrays, the image analysis
does not result in expression values, but in PM and MM probe intensity
values. One further analytical step is necessary with this technology
before se have a gene (or probe set) expression value: the 16 or 20 PM,
MM pairs must be summarized. This is not entirely straightforward
and research on it is continuing, but see Li & Wong (2001a, b) for the
most thorough published discussion to date, and Irizarry et al (2003).

5.3. Preprocessing tasks: normalization. As indicated earlier, the
most common gene expression experiment is the comparative one. With
nylon filter arrays this leads us to compare the images from two hy-
bridizations on to copies of the same basic filter. Sometimes this is
done by stripping the results of a first hybridization and re-using the
filter, but more commonly a new filter is used. Because the nylon sub-
strate is not solid, there may be warping, and this can make registration
across different filters a challenging problem. When this is adequately
addressed, interest focusses on comparing the two expression levels for
each of the genes spotted onto the array. An entirely analogous situ-
ation arises when we have reduced the two images of a single spotted
array or two high-density oligonucleotide array experiments to lists of
gene expression values. We are back to the same (biologist’s) question
that we met with SAGE data: which genes seem to be significantly
differentially expressed between the two mRNA sources?

Before we can address this question in the microarray context, how-
ever, there is usually a need for normalization. This is a generic term
describing the identification and removal of systematic sources of varia-
tion, other than differential expression, from the measured gene expres-
sion values. Systematic effects can come from different labeling efficien-
cies, different scanning parameters, and a variety of other causes, see
Schuchhardt et al (2000) for a good list. These effects can be related to
intensity, location on the filter, slide or chip, and other features of the
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process such as reagent batch and lab conditions. The need for normal-
ization can be seen most clearly in experiments involving two identical
mRNA samples hybridized to different membranes or chips, or on the
same glass slide, as long as the results are appropriately visualized.

Pairs of gene expression values, say from a treated (T) and a control
(C) source, are usually displayed by plotting the log

2
or log

10
intensities

against one another, e.g. log
2
T vs. the log

2
C. Such plots give an

unrealistic sense of concordance between the two sets of intensities
and can mask important features of the data. It is better to plot
M = log

2
(T/C) against A = log

2
(TC), which amounts to a rotation of

the previous plot and a rescaling of the axes. Assuming, as is almost
always the case, that we expect the majority of genes to be expressed at
about the same level in both cell samples, regardless of overall intensity,
the MA-plot should be scattered around the horizontal (A-) axis, in a
more or less symmetric manner, and the histogram of M values should
be centered around zero. This is rarely found to be the case.

A standard normalization for nylon filter and spotted array data is
to shift the log ratios so that their mean or median is zero. Frequently
there is a strong enough intensity dependence that a smoothing of M
values along the A axis defines a better, A-dependent centering. Spatial
effects require a modified solution, and there are yet others effects that
need to be dealt with from time to time. For a discussion of these
issues in the context of spotted arrays, see Yang et al (2001a, 2002),
while Schuchhardt et al (2000) is also of interest. Normalization is also
relevant to the high-density oligonucleotide technology, but is less well
discussed and somewhat more complex, see Li & Wong (2001a, b) and
Bolstad et al (2002).

5.4. Comparative analyses. Once the log ratios of intensities have
been normalized, interest focusses on those which seem to be genuinely
different from zero, i.e. which correspond to genes which are differen-
tially expressed. There is no reliable method of assigning statistical
significance to log ratios from unreplicated experiments, although a
number of model-based approaches claiming to do this can be found in
the literature, see Dudoit et al (2002b) for a discussion of this issue in
the context of spotted microarrays. For a single comparison, the best
approach is probably to apply a careful normalization to the log ratios,
rank them and construct a normal qq-plot of them. Typically the plot
will not be linear, but an examination of the extremes in conjunction
with the MA-plot can give a good sense of the outlier log-ratios.

It is also advisable to carry out a quality examination of the spots
corresponding to extreme log ratios. Exactly where to draw the line
with ranked log-ratios, when determining putatively differentially ex-
pressed genes, will depend on a variety of factors such as the shape of
the qq-plot, the level of false positive and false negative rates deemed
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acceptable, and the nature and number of follow-up experiments en-
visaged. No simple guidelines seem possible, and no formal statistical
approach seems available which deals with the question. The situation
is different when there are replicate pairs of filters, slides or chips. We
broaden the context somewhat to discuss the issue of multiple testing
more generally.

5.5. Multiple testing. The identification of differentially expressed
genes, i.e., genes whose expression levels are associated with a response
or covariate of interest, is but one of the testing problems which arise
with microarray data. The covariates could be either polytomous e.g.
treatment/control status, cell type, drug type, or continuous, e.g. dose
of a drug, time, and the responses could be, for example, censored sur-
vival times or other clinical outcomes. The biological question of differ-
ential expression can be restated as a problem in multiple hypothesis
testing: the simultaneous test for each gene of the null hypothesis of no
association between the expression levels and the responses or covari-
ates. As a typical microarray experiment measures expression levels
for several thousands of genes simultaneously, we are faced with an
extreme multiple testing problem. Special problems arising from the
multiplicity aspect include defining an appropriate Type I error rate
(i.e. false positive rate) and devising powerful multiple testing proce-
dures which control this error rate and account for the joint distribution
of the gene expression levels.

A number of recent papers have addressed the question of multiple
testing in the context of microarray experiments (Efron et al, 2000,
Golub et al, 1999, and Tusher et al, 2001) However, the proposed so-
lutions were not cast in the standard statistical framework and do not
provide adequate Type I error rate control. When going from single
to multiple hypothesis testing, several definitions of the Type I error
rate are possible and include: the per-comparison error rate (PCER),
defined as the expected value of (number of Type I errors/number of
hypotheses); the family-wise error rate (FWER), defined as the proba-
bility of at least one Type I error; and the false discovery rate (FDR),
or expected proportion of Type I errors among the rejected hypothe-
ses. In general, for a given multiple testing procedure, PCER ( FWER
and FDR ( FWER, one should thus decide on an appropriate error
rate to control for the problem under consideration. It is important
to note that the expectations and probabilities above are conditional
on assumptions concerning which hypotheses are true, i.e., on which
genes are differentially expressed. A fundamental, yet often ignored
distinction in multiple testing, is that between strong and weak control
of the Type I error rate. Strong control refers to control of the Type
I error rate under any combination of true and false hypotheses, i.e.,
for any combination of differentially and constantly expressed genes.
In contrast, weak control refers to control of the Type I error rate only
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when none of the genes are differentially expressed, i.e., under the com-
plete null hypothesis that all the null hypotheses are true. In general,
weak control without any other safeguards is unsatisfactory. In the
microarray setting, where it is very unlikely that none of the genes are
differentially expressed, it seems particularly important to have strong
control of the Type I error rate.

Adjusted p-values provide useful and flexible summaries of the stren-
gth of the evidence in favour of differential expression. The adjusted
p-value for a particular gene reflects the overall false positive error
rate for the family of hypotheses when genes with smaller p-values are
declared differentially expressed. Adjusted p-values may also be used
to summarize and compare the results from different multiple testing
procedures.

In their 1993 book, Westfall & Young (1993) proposed resampling-
based p- value adjustment procedures which are highly relevant in the
context of microarray experiments. In particular, these authors de-
fined adjusted p-values for multiple testing procedures which control
the family-wise error rate and take into account the dependence struc-
ture between test statistics (their min P and max T adjusted p-values).
In Dudoit et al (2001b) these ideas are applied in the context of microar-
ray data. It is clear that this area is undergoing rapid development,
see the recent review Ge et al (2003).

5.6. Classification and clustering. Microarray experiments have
revived interest in both cluster and discriminant analysis, by rais-
ing new methodological and computational challenges. In discrimi-
nant analysis, also called supervised learning or class prediction, we
might have observations on tumor mRNA samples known to belong
to prespecified classes, and the task is to build predictors for allocat-
ing new observations to these classes. By contrast, in cluster analysis,
also called unsupervised learning or class discovery, the classes are un-
known a priori and the task is to determine these classes from the data
themselves, i.e., to determine the number of classes and assign each
observation to one of these classes. Either experiments or genes or
both can be clustered, and the commonest approach uses hierarchical
procedures based on correlation as a measure of dissimilarity. Cluster-
ing of this kind is currently the most popular way of analysing gene
expression data, undoubtedly because of the power the technique to
group co-expressed genes and hence shed light on the function of un-
characterized genes. For some examples see Eisen et al (1998), Bassett
Jr et al (1999), and Alizadeh et al (2000).

The ability to successfully distinguish between tumor classes (al-
ready known or yet to be discovered) using gene expression data is an
important aspect of this novel genomic approach to cancer classifica-
tion. There are already many papers on this topic, and almost every
technique from the field of machine learning has already been applied
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to this problem. How do they compare? Are there advantages to the
more recent or more elaborate classification techniques? While it is not
possible to give a single long-term answer to this question, it is possi-
ble to obtain some insights. The study Dudoit et al (2002a) compared
a number of familiar methods for classifying tumors based on gene
expression data, including nearest neighbor classifiers, linear discrim-
inant analysis, and classification trees. Two recent machine learning
devices known as bagging and boosting were also considered. The dis-
crimination methods were all applied to datasets from three recently
published cancer gene expression studies, and the main conclusion,
for these datasets, was that simple classifiers such as diagonal linear
discriminant analysis and nearest neighbors performed remarkably well
compared to more elaborate ones such as aggregated classification trees.
These conclusions may change as the size of data sets grows.

5.7. Other topics. When expression levels are measured for thou-
sands of genes in time and in space, a challenging problem is to dis-
cover and recognize reproducible temporal expression patterns, includ-
ing ones not previously known. Current approaches to this class of
questions with microarray data are rather ad hoc, usually involving
one or two-dimensional clustering methods. These methods, typified
by Eisen’s ”heat diagrams” (Eisen et al, 1998), rearrange the order of
genes and experiments to map the data onto a plane in a more visually
compelling way. The hope is that visual examination of the resulting
image will identify patterns to which explanations can be attached.
Other researchers rely on multi-dimensional scaling, which uses dis-
tances between genes or arrays to produce a scatter plot in the plane
for subsequent visual examination. There is a clear need for more bio-
statistical research on problems like this. For yet other topics, and a
overview of the area from a statistical point of view, see Speed (2003),
where a much fuller bibliography can be found.
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Genetic Epidemiology (editors R.C. Elston, J.M. Olson and Lyle Palmer,
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