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A B S T R A C T

Oncologists need improved tools for selecting treatments for individual patients. The devel-
opment of therapeutically relevant prognostic markers has traditionally been slowed by poor
study design, inconsistent findings, and lack of proper validation studies. Microarray expres-
sion profiling provides an exciting new technology for relating tumor gene expression to pa-
tient outcome, but it also provides increased challenges for translating initial research findings
into robust diagnostics that benefit patients and physicians in therapeutic decision making.
This article attempts to clarify some of the misconceptions about the development and val-
idation of multigene expression signature classifiers and highlights the steps needed to move
genomic signatures into clinical application as therapeutically relevant and robust diagnostics.

J Clin Oncol 23:7332-7341.

INTRODUCTION

Oncologists need improved tools for select-
ing treatments for individual patients. Most
cancer treatments benefit only a minority
of the patients to whom they are adminis-
tered. Being able to predict which patients
are most likely to benefit would not only
save patients from unnecessary toxicity and
inconvenience, but might facilitate their re-
ceiving drugs that are more likely to help
them. In addition, the current overtreatment
of patients results in major expense for indi-
viduals and society, an expense that may not
be indefinitely sustainable.

Microarray expression profiling has
provided an exciting new technology for at-
tempting to identify classifiers for tailoring
treatments to patients. To date, however,
no multigene expression signature has
been widely adopted into oncology practice
and very few are close to achieving such sta-
tus. Development of biomarker classifiers
useful for improving treatment decisions
and sufficiently validated for broad clinical
application is difficult, and more difficult
for expression signature classifiers. The
field of microarray expression profiling is

also burdened with both unrealistic hype
and excessive skepticism. In this article, I
will attempt to clarify some of the miscon-
ceptions about the development and vali-
dation of multigene expression signature
classifiers and highlight the steps needed
to move genomic signatures into clinical
application as therapeutically relevant and
robust diagnostics.

WHY ARE SO FEW PROGNOSTIC FACTORS
USED IN ONCOLOGY?

Although there is a large literature on prog-
nostic factors for cancer patients, very few
such factors are used in clinical practice.
Prognostic factors are unlikely to be used
unless they are therapeutically relevant,
and most publications do not establish
such relevance. Most prognostic factor
studies are conducted using a convenience
sample of patients for whom tissue is avail-
able, but the cohort is often far too hetero-
geneous with regard to stage and treatment
to support therapeutically relevant conclu-
sions. Additional problems in the prognos-
tic marker literature derive from the fact
that most studies develop prognostic
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markers and prognostic models, but do not test prespeci-
fied models using independent data. Clinical drug trials
are generally prospective, with patient selection criteria,
primary end point, hypotheses, and analysis plan specified
in advance in a written protocol. The consumers of clinical
trial reports have been educated to be skeptical of data
dredging to find something ‘‘statistically significant’’ to re-
port in clinical trials. They are skeptical of analyses with
multiple end points or multiple subsets, knowing that
the chances of erroneous conclusions increase rapidly
once one leaves the context of a focused, single-hypothesis
clinical trial. Prognostic marker studies are generally per-
formed with no written protocol, no eligibility criteria, no
primary end point or hypotheses and no defined analysis
plan. The analysis often includes numerous analyses of dif-
ferent end points and patient subsets. The problem is not
just that the studies are for developing prognostic markers
rather than validating previously specified markers, but
that even as developmental studies the planning and anal-
ysis is relatively unfocused.1

Another feature that has hindered the use of prog-
nostic markers in medical practice is the lack of studies
demonstrating the reproducibility of results for assaying
markers either between laboratories, between samples of
the same tissue specimen, or between times and readers
for the same laboratory.

Many of these problems apply to studies of prog-
nostic classifiers on gene expression profiles. Some of
the problems are even more formidable. Because of the
number of genes available for analysis, microarray data
can be a veritable fountain of false findings unless a
structured approach to model development and valida-
tion is utilized.2

Some of the key steps in obtaining a classifier that is
ready for ‘‘prime time’’ are listed in Table 1. These steps
are discussed in the following sections. We have already
discussed the importance of developing the classifier for
a specific therapeutic decision problem and using cases rel-
evant to that decision context. That is of key importance.
There are, however, some well-defined therapeutic deci-

sion contexts where even accurate, reproducible, and
well-validated classifiers are unlikely to be used widely.
For example, consider the treatment of patients with ad-
vanced disease treated with a potentially curative treat-
ment. A classifier for predicting the patients unlikely to
respond to that therapy may not be widely used if there
is no good alternative treatment. The classifier would
have to have a very high negative predictive value in order
to justify withholding a potentially curative therapy. It is
important to evaluate carefully the context of therapeutic
decision making if one wants to develop a classifier that
has a sufficiently great chance of having clinical impact
to warrant the large expense and time commitment re-
quired to achieve the other parts of Table 1.

WHAT IS A MULTIGENE CLASSIFIER?

A multigene expression signature classifier is a function
that provides a classification of a tumor based on the ex-
pression levels of the component genes. The classes are of-
ten good-risk or poor-risk, but classifiers can be defined to
distinguish any set of classes for which a training set of
cases exist for each class. The term ‘‘classifier’’ is somewhat
over-restrictive because a multigene biomarker can be a
function that provides a continuous risk score rather
than a class identifier. Here we will use the term ‘‘classi-
fier’’ however, because for validation purposes it is usually
important that cutoff thresholds of a risk score be defined
in advance.

Some people prefer the phrase ‘‘multigene bio-
marker’’ to ‘‘multigene classifier.’’ This can lead to serious
misunderstandings, however. A completely defined classi-
fier can be used to select patients and stratify patients for
therapy, and the clinical effectiveness of the classifier can
potentially be validated. Specifying only the genes involved
does not enable one to structure prospective clinical
validation experiments in which patients are assigned or
stratified in prospectively well-defined ways. Hence, one is
forever correlating expression of individual genes against
outcomes, but never evaluating the use of a defined diag-
nostic classifier that can be applied to patients. The gene
sets identified as associated with outcome tend to be un-
stable because gene groups are correlated by co-regulation
and the stringent criteria used for identifying differentially
expressed genes results in reduced statistical power for
gene selection. It is often much easier to develop a classifier
that performs accurately than it is to identify exactly the
optimal gene set.

The components of expression signature classifiers
need not be valid biomarkers in the sense of the US
Food and Drug Administration.3 Those criteria require
that the role of the biomarker be mechanistically under-
stood and accepted as markers of disease activity. Such
criteria are relevant for biomarkers used as surrogate
end points but not for the components of expression

Table 1. Key Steps in Development and Validation of Therapeutically
Relevant Genomic Classifiers

Develop classifier for addressing a specific important therapeutic decision
Patients are sufficiently homogeneous and receiving uniform
treatment so that results are therapeutically relevant
Treatment options and costs of mis-classification are such that a

classifier is likely to be used
Perform internal validation of classifier to assess whether it appears

sufficiently accurate relative to standard prognostic factors that it is
worth further development

Translate classifier to platform that would be used for broad clinical
application

Demonstrate that the classifier is reproducible
Independent validation of the completely specified classifier on a

prospectively planned study

Therapeutically Relevant Genomic Classifiers
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signatures used for tailoring treatments. It is, of course,
desirable to understand the mechanistic relationship of
the components of an expression signature, but the classi-
fier can be validated without such understanding and clear
biologic interpretation may be more difficult to achieve
than accurate classification.4

The concept of ‘‘validation’’ has been problematic for
the development of traditional disease biomarkers. Much
of the confusion derives from attempting to define valida-
tion in an absolute sense. A much more pragmatic and
productive approach is to focus on validation for a speci-
fied purpose. For example, an expression signature should
be developed for the purpose of predicting outcome for
a well-defined set of patients who receive a well-defined
therapy. The signature classifier would be developed using
data from such patients and would be validated for an in-
dependent set of such patients. The developmental study
would identify the genes to be included in the classifier,
usually by screening a much larger set of genes to find
those whose expression is most correlated with outcome.
The developmental study would also combine the genes
into a completely specified classifier that can be used
and potentially validated in a subsequent study. The vali-
dation does not consist of seeing whether the same genes
are prognostic in the subsequent study. The validation
should be focused on addressing whether the application
of the previously defined classifier to a new set of patients
results in clinical benefit. This is discussed further in a
subsequent section.

DEVELOPING A GENOMIC CLASSIFIER

What Kinds of Classifiers Are Most Useful?

Many algorithms have been used effectively with DNA
microarray data for class prediction. A linear discriminant
is a function

where xi denotes the expression measurement for the
ith gene, wi is the weight given to that gene, and the summa-
tion is over the set Fof features (genes) selected for inclusion
in the classifier. For a two-class problem, there is a threshold
value c that must be defined; a sample with expression pro-
file defined by a vector _x of values is predicted to be in class 1
or class 2 depending on whether l(_x) as computed from the
equation is less than or greater than c.

Many kinds of classifiers used in the literature have
the form shown in the preceding equation. They differ
with regard to how the weights are determined. These clas-
sifiers include Fisher’s linear discriminant analysis and di-
agonal discriminant analysis,5 the compound covariate
predictor of Radmacher et al,6 the weighted voting method
of Golub et al,7 support vector machines with inner prod-

uct kernel,8 perceptrons,9 and the naı̈ve Bayes classifier for
multivariate Gaussian distributions.10

When the number of genes (p) is greater than the
number of cases (n), perfect separation of a training set
is always possible with a linear classifier. In fact, there
are an infinite number of linear classifiers that achieve
perfect separation. That suggests that there may not be
sufficient information in most datasets to effectively utilize
nonlinear classifiers. Although complex nonlinear classi-
fiers are popular, there is very little evidence that they
perform any better than simpler methods.

In the study of Dudoit et al,5 the simplest methods,
diagonal linear discriminant analysis and nearest-neighbor
classification, performed as well or better than the more
complex methods. Nearest-neighbor classification is based
on a distance function d(_x,_y), which measures the distance
between the expression profiles _x and _y of two samples.
The distance function utilizes only the genes in the selected
set of genes F. To classify a sample with expression profile

_y, compute d(_x,_y) for each sample _x in the training set.
The predicted class of _y is the class of the sample in the
training set that is closest to _y with regard to the dis-
tance function.

Paik et al11 used linear classifiers for predicting recur-
rence risk of patients with primary breast cancer. Paik et al
identified 19 genes for inclusion in the classifier. These
included five proliferation genes, four genes related to es-
trogen metabolism, two Her2 genes, two genes related to
tissue invasion, and three other genes. These genes were
selected on the basis of their correlation with recurrence
in a training set of data. The classifier was based on com-
puting the average expression level for each gene group
and then a weighted average of the gene group–specific
averages. The genes not in the proliferation, estrogen,
Her2 or invasion groups were taken as members of single-
ton groups. The weights were determined to optimize pre-
diction on the training set. The final component of the
classifier determined based on the training set were two
cutpoints for the weighted sum of gene expression in order
to define groups with a low risk, intermediate risk, and
high risk of recurrence.

How Many Genes Should Be Included

in the Classifier?

Most classifiers do not use all of the genes whose ex-
pression is measured. Consequently, one step in develop-
ing a classifier is determining which genes to include; this
is called feature selection. Using all of the genes means that
all of the genes would have to be measured in the future for
classification of new patients. That is particularly problem-
atic if the classifier is going to be converted to a real-time
reverse transcriptase polymerase chain reaction (RT-PCR)
platform. Also, the number of genes that are actually dif-
ferentially expressed between the classes (ie, ‘‘informative

lðxÞZ+
i2F

wixi

Richard Simon

7334 JOURNAL OF CLINICAL ONCOLOGY

Copyright © 2005 by the American Society of Clinical Oncology. All rights reserved. 
Staatsbibliothek on March 4, 2008 from 194.95.59.195. 

Information downloaded from jco.ascopubs.org and provided by SWETS SUBSCRIPTION SERVICE for Bayerische



genes’’) is usually small compared to the number of genes
that are not differentially expressed (‘‘noise genes’’). In-
cluding too many noise genes can dilute the influence
of the informative genes and reduce the accuracy of pre-
diction. It also makes interpretation and future use of the
predictor more difficult.

It is sometimes possible to distinguish very different
cell types based on expression levels of a small number
of genes. Even if such genes are not known a priori,
they can be identified if they are very differentially ex-
pressed in the two cell types. This is often not the case
for more difficult classification problems however. For
these problems there may be a dozen or more differentially
expressed genes, but the fold differences in expression may
not be large and it may be difficult to identify these genes
from among the thousands of noise genes. Omitting infor-
mative genes from a classifier has a greater deleterious ef-
fect on classification accuracy than does inclusion of noise
genes, so long as the number of noise genes included is not
too great. Consequently, in many cases accurate classifiers
can be developed, but it is more difficult to develop such
classifiers based on a very small number of genes.

INTERNAL VALIDATION OF A CLASSIFIER
IN DEVELOPMENTAL STUDIES

It is useful to divide genomic classifier studies into devel-
opmental studies and validation studies. Developmental
studies are the ones that first develop the classifiers and
are analogous to phase II clinical trials. They should in-
clude an indication of whether the genomic classifier is
promising and worthy of phase III evaluation. There are
special problems in evaluating whether a genomic classifier
is promising based on a developmental study, however.
The difficulty derives from the fact that the number of can-
didate genes available for use in the classifier is much
larger than the number of cases available for analysis. In
such situations, it is always possible to find classifiers
that accurately classify the data on which they were devel-
oped even if there is no relationship between expression of
any of the genes and outcome.6 Consequently, even in de-
velopmental studies, some kind of validation on data not
used for developing the model is necessary. This internal
validation is usually accomplished either by splitting the
data into two portions, one used for training the model
and the other for testing the model, or some form of cross
validation based on repeated model development and test-
ing on random data partitions. This internal validation
should not, however, be confused with the kind of external
validation of the classifier in a setting simulating broad
clinical application.

Split-Sample Validation

The most straightforward method of estimating the
accuracy of future prediction is the split-sample validation

method of partitioning the set of samples into a training
set and a test set. Rosenwald et al12 used this approach suc-
cessfully in their international study of prognostic predic-
tion for large B cell lymphoma. They used two thirds of
their samples as a training set. Multiple kinds of predictors
were studied on the training set. When the collaborators of
that study agreed on a single fully specified prediction
model, they accessed the test set for the first time. On
the test set there was no adjustment of the model or fitting
of parameters. They merely used the samples in the test set
to evaluate the predictions of the model that was com-
pletely specified using only the training data. In addition
to estimating the overall error rate on the test set, one can
also estimate other important operating characteristics of
the test such as sensitivity, specificity, positive and negative
predictive values.

The split-sample method is often used with so few
samples in the test set, however, that the validation is
almost meaningless. One can evaluate the adequacy of
the size of the test set by computing the statistical sig-
nificance of the classification error rate on the test set
or by computing a confidence interval for the test-set
error rate. Since the test set is separate from the training
set, the number of errors on the test set has a bino-
mial distribution.

Michiels et al13 suggested that multiple training-test
partitions be used, rather than just one. The split sample
approach is mostly useful, however, when one does not
have a well-defined algorithm for developing the classifier.
When there is a single training set-test set partition, one
can perform numerous unplanned analyses on the training
set to develop a classifier and then test that classifier on the
test set. With multiple training-test partitions however,
that type of flexible approach to model development
cannot be used. If one has an algorithm for classifier de-
velopment, it is generally better to use one of the cross
validation or bootstrap resampling approaches to estimat-
ing error rate because the split sample approach does not
provide as efficient a use of the available data.14 Some of
the conclusions of Michiels et al about the inaccuracy of
published expression profiles may be artifacts of their
using inadequately small test sets.

Cross Validation

Cross validation is an alternative to the split sample
method of estimating prediction accuracy.6 Molinaro et al14

describe and evaluate many variants of cross-validation
and bootstrap resampling for classification problems
where the number of candidate predictors vastly exceeds
the number of cases. For illustration we will describe
leave-one-out cross validation (LOOCV). LOOCV starts
like split-sample cross validation in forming a training
set of samples and a test set. With LOOCV, however,
the test set consists of only a single sample; the rest of
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the samples are placed in the training set. The sample in
the test set is placed aside and not utilized at all in the de-
velopment of the class prediction model. Using only the
training set, the informative genes are selected and the pa-
rameters of the model are fit to the data. Let us call M1 the
model developed with sample 1 in the test set. When this
model is fully developed, it is used to predict the class of
sample 1. This prediction is made using the expression
profile of sample 1, but obviously without using knowl-
edge of the true class of sample 1. This predicted class is
compared to the true class label of sample 1. If they dis-
agree, then the prediction is in error. Then a new training
set–test set partition is created. This time sample 2 is
placed in the test set and all of the other samples, including
sample 1, are placed in the training set. A new model is
constructed from scratch using the samples in the new
training set. Call this model M2 . Although the same algo-
rithm for gene selection and parameter estimation is used,
since model M2 is constructed from scratch on the new
training set, it will in general not contain exactly the same
gene set asM1. After creatingM2, it is applied to the expres-
sionprofile of sample 2,whichwas omitted. If this predicted
class does not agree with the true class label of the second
sample, then the prediction is in error. The process is re-
peated leaving each of the n biologically independent sam-
ples out of the training set, one at a time. During the steps, n
different models are created and each one is used to predict
the class of the omitted sample. The number of prediction
errors is totaled and reported as the leave-one-out cross-
validated estimate of the prediction error.

At the end of the LOOCV procedure, you have con-
structed n different models. They were constructed in or-
der only to estimate the prediction error associated with
the type of model constructed. The model that would
be used for future predictions is one constructed using
all n samples. That is the best model for future prediction
and the one that should be reported in the publication.
The cross-validated error rate is an estimate of the error
rate to be expected in use of this model for future samples,
assuming that the relationship between class and expres-
sion profile is the same for future samples as for the cur-
rently available samples. With two classes, one can use a
similar approach to obtain cross-validated estimates of the
sensitivity, specificity, and the negative and positive predic-
tive values of the classification procedure. One could even
estimate an entire receiver operating characteristics curve.

The cross-validated prediction error is an estimate of
the prediction error associated with application of the al-
gorithm for model building to the entire dataset. A com-
monly used invalid estimate is called the re-substitution
estimate. You use all the samples to develop a model.
Then you predict the class of each sample using that
model. The predicted class labels are compared to the
true class labels and the errors are totaled.

Simon et al15 performed a simulation to examine the
bias in estimated error rates for class prediction. Two types
of LOOCV were studied: one with removal of the left-out
specimen before selection of differentially expressed genes
and one with removal of the left-out specimen before com-
putation of gene weights and the prediction rule but after
gene selection. They also computed the re-substitution
estimate of the error rate. In a simulated dataset, 20 gene
expression profiles of length 6,000 were randomly generated
from the same distribution. Ten profiles were arbitrarily as-
signed to class 1 and the other 10 to class 2, creating an
artificial separation of the profiles into two classes. Since
no true underlying difference exists between the two classes
class prediction will perform no better than a random guess
for future biologically independent samples. Hence, the
estimated error rates for simulated data sets should be
centered around 0.5 (ie, 10 misclassifications of 20).

Figure 1 shows the observed number of misclassifica-
tions resulting from each level of cross validation for 2,000
simulated data sets. It is well known that the re-substitution
estimate of error is biased for small data sets and the
simulation confirms this, with an astounding 98.2% of
the simulated data sets resulting in zero misclassifications
even though no true underlying difference exists between
the two groups. Moreover, the maximum number of mis-
classified profiles using the resubstitution method was
only one.

Cross validating the prediction rule after selection of
differentially expressed genes from the full data set does
little to correct the bias of the re-substitution estimator:
90.2% of simulated data sets still result in zero misclassi-
fications. It is not until gene selection is also subjected
to cross validation that we observe results in line with our
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Fig 1. The effect of various levels of cross validation on the estimated error
rate of a predictor. Two thousand datasets were simulated as described in
the text. Class labels were arbitrarily assigned to the specimens within each
dataset, and so poor classification accuracy is expected. Class prediction
was performed on each dataset as described in the supplemental infor-
mation, varying the level of leave-one-out cross validation used in prediction.
Vertical bars indicate the proportion of simulated data sets (of 2,000)
resulting in a given number of misclassifications for a specified cross-
validation strategy. Reprinted from Simon et al.15
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expectation: the median number of misclassified profiles
jumps to 11, although the range is large (0 to 20).

The simulation results underscore the importance
of cross validating all steps of predictor construction in
estimating the error rate. A study of breast cancer also
illustrates the point: van’t Veer et al16 predicted clinical out-
come of patients with axillary node-negative breast cancer
(metastatic disease within 5 years v disease free at 5 years)
from gene expression profiles. The investigators controlled
the number of misclassified recurrent cases (ie, the sensitiv-
ity of the test) in both situations, so here we focus attention
on the difference in estimated error rates for the disease-free
cases. Partial and complete cross validation resulted in esti-
mated error rates of 27% (12 of 44) and 41% (18 of 44),
respectively.The improperly cross-validatedmethod results
in a seriously biased underestimate of the error rate, prob-
ably largely due to overfitting the predictor to the specific
dataset. Other examples of incorrect use of cross validation
are described by Ambroise and McLachlan.17 There are
numerous articles in the most prominent journals, written
by both biologists and methodologists, that make claims
for gene expression classifiers and for new classification
algorithms, which are invalid because they have cross
validated improperly.

It is important to compute the statistical significance
of the cross-validated estimate of classification error. This
determines the probability of obtaining a cross-validated
classification error as small as actually achieved if there
were no relationship between the expression data and class
identifiers. A flexible method for computing this statistical
significance was described by Radmacher et al.6 It involves
randomly permuting the class identifiers among the
patients and then recalculating the cross-validated classifi-
cation error for the permuted data. This is done a large
number of times to generate the null distribution of
the cross-validated prediction error. If the value of the
cross-validated error obtained for the real data lies far
enough in the tail of this null distribution, then the results
are statistically significant. This method of computing
statistical significance of cross-validated error rate for a
wide variety of classifier functions is implemented in the
BRB-ArrayTools software (National Cancer Institute,
Bethesda, MD).18 Statistical significance, however, does
not imply that the prediction accuracy is sufficient for
the test to have clinical value, however.

DOES THE CLASSIFIER PERFORM BETTER THAN
STANDARD PROGNOSTIC FACTORS?

Even if a classifier is developed for a set of patients suffi-
ciently homogeneous and uniformly treated to be thera-
peutically relevant, it may be important to evaluate
whether the classifier predicts more accurately than do
standard prognostic factors or adds predictive accuracy
to that provided by standard prognostic factors. For exam-

ple, Rosenwald et al12 developed a classifier of outcome for
patients with advanced diffuse large B cell lymphoma
receiving CHOP chemotherapy. The International Prog-
nostic Index (IPI) is easily measured and prognostically
important for such patients, however, and so it was impor-
tant for Rosenwald et al to address whether their classifier
provided added value.

The most effective way of addressing whether a classi-
fier adds predictive accuracy to a standard classification sys-
tem is to examine outcome for the new system within the
levels of the standard system. This was the approach used by
Rosenwald et al12 for data in their separate test set. This is
illustrated in Figure 2. The spread of the outcome survival
curves for the classes defined by the new expression classi-
fier within levels of the IPI indicate the extent to which the
new system adds classification accuracy.When the classifier
has been completely determined on a training set of data,
then the statistical significance of the contribution of the
new classifier to the standard IPI can be computed easily
from a log-rank test using the test-set data.

Measuring whether a classifier adds predictive accu-
racy when there is not a separate test set is more difficult.
Curves such as those shown in Figure 2 can be constructed
using the predicted class of each case as determined by
cross validation. The separation of the survival curves
within levels of the standard prognostic factor is still a valid
measure of the independent contribution of the expression
classifier, but the statistical significance of the contribution
can no longer be determined by computing a log-rank
test of the separation in survival curves. The standard
log-rank test is not valid because the classes were not de-
termined independently of the data. The cross-validation
process induces a dependence among cases that invalidates
the standard statistical analysis. The statistical signifi-
cance of the independent contribution of the new classifier
can be determined using more complex permutation
methods, however.19

Several important publications have attempted to
determine the relative importance of an expression clas-
sifier and standard prognostic factors by using standard
multivariate statistical models, such as the logistic model
for binary response data and the proportional hazards
model for survival data. The models often include stan-
dard prognostic factors and the predicted class of a case
based on a cross-validation analysis.16 Statistical sig-
nificance and CIs for the regression coefficients corre-
sponding to each factor are then computed using the
usual formulas. This kind of analysis is problematic,
however.20 There is also a more fundamental problem
with this kind of analysis. The value of an expression
based classifier is determined by its prediction accuracy.
Consequently, the analysis should emphasize estimating
prediction accuracy, not the size of regression coeffi-
cients, in additive multivariate models.21
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TRANSLATION OF PLATFORMS AND DEMONSTRATING
ASSAY REPRODUCIBILITY

The power of microarray expression profiling lies in the
parallel measurement of expression levels for thousands
of genes. This is useful for screening genes to find those
that should be included in a classifier, but it is rarely nec-
essary to measure expression for hundreds or thousands of
genes in application of the classifier to subsequent cases.

There are considerable challenges with microarray ex-
pression profiling of formalin-fixed paraffin-embedded
(FFPE) tissue. With appropriately designed primers,
however, RT-PCR can be performed on FFPE tissue.22

Consequently, the developmental strategy of screening the
genome using microarrays and then developing genomic
classifiers based on a limited number of genes whose
expression is measured using RT-PCR on FFPE tissue is
potentially broadly applicable.

Whether the classifier is based on DNA microarray
analysis oronRT-PCRanalysis, it is important that the assay
be standardized and that evaluations of reproducibility
be conducted. The study by Dobbin et al23 demonstrated
that microarray protocols using Affymetrix arrays could
be sufficiently standardized to achieve good inter- and
intra-laboratory reproducibility. Achieving such repro-
ducibility requires standardization of protocols and stan-
dardization of platform and reagents, however. One of
the challenges in moving genomic classifiers to the clinic
is the conduct of such studies. If a genomic classifier is
used for identifying a patient population for which an
experimental drug is shown to be effective, the drug sponsor
has a financial incentive to adequately standardize and val-
idate the classifier so that the classifier can be approved as
a diagnostic test. In using genomic classifiers with commer-
cially available therapy, however, it is not clearwhether any-
onehas sufficient incentive todo the laborious butnecessary
studies needed to standardize and validate the reproducibil-
ity of the assay for measuring the classifier.

INDEPENDENT VALIDATION OF GENOMIC CLASSIFIERS

Although studies that develop classifiers often report a
seemingly impressive accuracy for predicting outcome,
there is abundant reason to demand external validation
based on truly independent data. We refer to this as exter-
nal validation because it is based on independent data
external to the study used to develop the classifier. The
analysis of high-dimensional gene expression data is com-
plex and there are many examples of serious errors in in-
ternal estimates of accuracy included in publications in the
best journals. There are also potential biases in internal es-
timates of accuracy based on tissue handling and assay re-
agent differences between cases and controls or responders
and nonresponders. Developmental studies also often uti-
lize patients selected in a manner that may not be repre-
sentative of the diversity of patients to whom the classifier
would be applied if it were adopted for broad clinical use.
Developmental studies also often have the assay performed
in one research laboratory based on archived specimens
and this may not reflect the sources of assay variability
likely to be encountered in broad practice.24

Often the initial study in which the classifier is devel-
oped will not be large enough to estimate the positive and
negative predictive values of the test with sufficient
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Fig 2. Survival curves for diffuse large-B-cell lymphoma patients by gene
expression classifier stratified by three levels of International Prognostic
Index (IPI) score: (A) IPI scores 0-1; (B) IPI scores 2-3; (C) IPI scores 4-5.Four
prognostic classes were defined based on gene expression risk score.
Graphs show survival curves for patients with risk score below the median
(quartiles 1 and 2) versus patients with risk score above the median (quartiles
3 and 4). Reprinted from Rosenwald et al.12
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precision to determine whether the test has real clinical
utility. It is important that the intended clinical use of
the classifier be carefully considered in planning the exter-
nal validation study so that these performance character-
istics can be adequately estimated.

The objective of external validation is to determine
whether use of a completely specified diagnostic classifier
for therapeutic decision making in a defined clinical con-
text results in patient benefit. The objective is not to repeat
the developmental study and see if the same genes are
prognostic or if the same classifier is obtained. An inde-
pendent validation study could be a prospective clinical
trial in which patients are randomly assigned to treatment
assignment without use of the classifier versus treatment
assignment with the aid of the classifier. Often, however,
this design will be inefficient and require a huge sample
size because many or most of the patients will receive
the same treatment either way they are assigned. For exam-
ple, consider women with lymph node-negative, estrogen
receptor (ER) –positive breast cancers. Approximately one
third of such patients might be expected to be classified as
low risk for recurrence based on the Oncotype-DX expres-
sion signature–based risk score.11 If one wants to test the
strategy of withholding cytotoxic chemotherapy from the
subset of patients classified as low risk, it would be inefficient
to randomly assign all of the node-negative, ER-positive
patients. If one randomly assigns all the patients and per-
forms the assay on only the half assigned to have classifier
based therapy, then the two randomization groups must
be compared overall, although two thirds of the patients
receive the same treatment in both arms. A more efficient
alternative is to perform the assay up front for all patients,
and then randomly assign only those classified as low risk.
Those patients would be assigned to receive either tamox-
ifen alone or tamoxifen plus cytotoxic chemotherapy. If
the low-risk patients do not benefit from cytotoxic chemo-
therapy, then the genomic classifier is clinically useful
because it enables chemotherapy to be withheld from pa-
tients who otherwise would have received it.

Randomly assigning only the patients classified as low
risk is more efficient than assigning all of the patients, but
it still would require many patients. It is a therapeutic
equivalence trial in the sense that finding no difference
in outcome changes clinical practice; consequently it is
important to be able to detect small differences. Since
the expected recurrence rate is so low, it would take
many patients to detect a difference between the treatment
arms. But if the recurrence rate is as low as predicted by the
classifier, then the benefit of chemotherapy is necessarily
extremely small. Consequently, an alternative design for
external validation is a single-arm study in which the pa-
tients classified as low risk are treated with tamoxifen
alone. If, with long follow-up, these patients have a very
low recurrence rate, then the classifier is considered vali-

dated for providing clinical benefit because it enabled the
identification of patients whose prognosis was so good
with tamoxifen monotherapy that they could be spared
the toxicity, inconvenience and expense of chemotherapy.
This was the approach used by Paik et al11 for validation of
the OncoType Dx classifier for patients with node-negative,
ER-positive breast cancer. The genes that seemed prog-
nostic were initially identified based on published micro-
array studies. Primers for measuring expression of those
genes using RT-PCR of FFPE tissue were developed and
a classifier was developed based on archived tissue from
National Surgical Adjuvant Breast and Bowel (NSABP)
studies. The completely prespecified classifier was then
tested on 668 patients from NSABP B-14 who received
tamoxifen alone as systemic therapy. Fifty-one percent
of the assayed patients fell into the low-risk group. They
had a distant recurrence rate at 10 years of 6.8% (95%
CI, 4.0% to 9.6%). Much higher rates of distant recurrence
were seen in the intermediate- and high-risk groups of the
classifier (14.3% and 30.5%, respectively).

One might argue that treatment determination using
a genomic classifier for women with stage I ER-positive
breast cancer should not be compared with the strategy
of administering to all such women tamoxifen plus
chemotherapy, because there are practice guidelines
available based on tumor size and age that withhold
chemotherapy from some patients. Nevertheless, it
would still be inefficient to randomly assign women to
genomic classifier–determined therapy or nongenomic
practice guidelines–determined therapy in which the ge-
nomic classifier is measured only on the women randomly
assigned to its use. Most of the women will probably re-
ceive the same treatment in whichever arm they are as-
signed to. It is much more efficient to perform the assay
for measuring the genomic classifier, and then randomly
assign only the women for whom the two treatment strat-
egies differ. The current plan for independently validating
the classifier developed by van’t Veer et al16 for women
with primary breast cancer utilizes this design strategy.

Phase III clinical trials generally attempt to utilize an
intervention in a manner that it might be used if adopted
in broad clinical practice. For evaluating a diagnostic clas-
sifier, a multicenter clinical trial provides the challenges of
distributed tissue handling and real time assay perfor-
mance that would be met in general use. The assays might
be performed in multiple laboratories and cannot be
batched in time with a single set of reagents as might be
done in a retrospective study. Consequently, the prospec-
tive clinical trial is the gold standard for external validation
of a genomic classifier.

External validation based on a new prospective clini-
cal trial will require a long follow-up time for low-risk pa-
tients, however. In such circumstances it can be useful to
conduct a prospectively planned validation using patients
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treated in a previously conducted prospective multicenter
clinical trial if archived tumor specimens are available for
the vast majority of patients. The validation study should
be prospectively planned with at least as much detail and
rigor as for prospective accrual of new patients. Although
assaying procedures probably cannot be distributed over
time in the same way as for newly accrued patients, assay
reproducibility studies should be conducted to demon-
strate that the assay has been standardized and quality
controlled sufficiently so that such sources of variation
are negligible. A written protocol should be developed
to ensure that the study is planned prospectively to eval-
uate the clinical benefit of a completely specified genomic
classifier for a defined therapeutic decision in a defined
population in a hypothesis testing manner as it would
for a prospective clinical trial. The study of Paik et al11

of the OncoType Dx classifier for women with node-
negative, ER-positive breast cancer is an example of
careful prospective planning of an independent validation
study using archived specimens.

USE OF GENOMIC CLASSIFIERS IN NEW
DRUG DEVELOPMENT

The objective of validation of a genomic classifier differs
somewhat for existing therapy compared to an experimen-
tal therapy. With existing therapy, the emphasis should be
on validation of the clinical benefit of using the classifier.
With an experimental therapy, however, the emphasis
should be on demonstrating effectiveness of the drug in
a population identified by the classifier as being more likely
to benefit. Simon andMaitournam25 demonstrated that use
of a genomic classifier for focusing a clinical trial in this
manner can result in a dramatic reduction in required sam-
ple size, depending on the sensitivity and specificity of the
classifier for identifying such patients. Not only can such
targeting provide a huge improvement in efficiency in
phase III development, it also provides an increased thera-
peutic ratio of benefit to toxicity and results in a greater
proportion of treated patients who benefit.

Developing a genomic classifier of which patients are
likely to benefit for targeting phase III trials may require
larger phase II studies. This depends on the type of drug be-
ing developed. For example, if the drug is an inhibitor of
a kinase mutated in cancer, then there is a natural diagnos-
tic and no genome-wide screening is needed. Similarly, in
the comparisonof trastuzumabplus chemotherapy to chem-
otherapy alone in chemotherapy-naı̈ve and -refractory

metastatic breast cancer patients,26,27 cases with less than
a 2� level of expression of the Her2/neu protein were ex-
cluded. In the development of gefitinib, had the phosphor-
ylation domain of the EGFR gene been sequenced in
responders and nonresponders on phase II trials of non–
small-cell lung cancer patients, mutation status could
have been used in focusing the phase III trials.28,29 For
manymolecularly targeted drugs, however, the appropriate
assay for selecting patients is not known, and development
of a classifier based on comparing expression profiles for
phase II responders versus phase II nonresponders may
be the best approach. In such instances, one may not
have sufficient confidence in the genomic classifier devel-
oped in phase II to use it for excluding patients in phase
III trials. It may be better in this case to accept all conven-
tionally eligible patients, and use the classifier to define
a single subset analysis for the patients predicted to be
most responsive to the new drug. The overall null hypoth-
esis for all randomly assigned patients is tested at the .04
significance level. A portion 0.01 of the usual 5% false-
positive rate is reserved for testing the new treatment in
the subset predicted by the classifier to be responsive.
This analysis strategy provides sponsors an incentive
for developing genomic classifiers for targeting therapy
in a manner that does not unduly deprive them of the
possibility of broad labeling indications when justified by
the data.

CONCLUSIONS

Oncologists need improved tools for selecting treatments
for individual patients. The genomic technologies avail-
able today are sufficient to develop such tools. There is
not broad understanding of the steps needed to translate
research findings of correlations between gene expression
and prognosis into robust diagnostics validated to be of
clinical benefit. This article has attempted to identify
some of the major steps needed for such translation.
Many of these steps are not easy, nor cheap. For therapeu-
tic decision settings of sufficient importance, attention
should be devoted to establishing a means of funding
and expeditiously carrying out these steps.

- - -
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