# Application of the cDNA-array-technology for the identification of zinc-responsive genes in mammalian cells





Birgit Kindermann, Frank Döring, Michael Pfaffl\* and Hannelore Daniel **Technical University of Munich, Molecular Nutrition Unit** \*Department of Food and Nutrition, D-85350 Freising-Weihenstephan

## Introduction

Zinc is an essential trace element with cofactor functions in a large number of proteins of intermediate metabolism, hormone secretion pathways and immune defense. Despite numerous experimental findings, mainly obtained in experimental animals, the zinc status is difficult to assess, since specific, sensitive and reliable indicators are still lacking [1,2]. As a cofactor of transcription factors, zinc is involved also in control of gene expression [3] and therefore, zinc-sensitive genes could be used as biomarkers for the determination of the zinc status *in vivo*. We used the intestinal epithelial carcinoma cell line HT29 as a reporter cell system to investigate the effects of an altered cellular zinc concentration on gene expression in vitro. The screening method was based on the cDNA-array-technology, which allows to monitor the expression profile of thousands of individual genes simultaneously in a single experiment [4, 5].

#### Methods

#### Cell culture

HT29 cells were cultured in 25 cm2 T-flasks and incubated for 72 hours in media containing either a normal zinc concentration (0.25 ppm Zn, control) or a high zinc concentration (10 ppm Zn, supplementation).

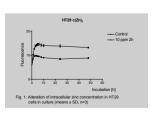
#### Measurement of intracellular zinc concentration (c(Zn),)

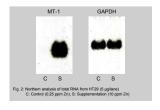
Plated onto 24-well plates, HT29 cells were cultured until they reached 80-90 % confluency. Cultures were loaded with the zinc sensitive dye Newport Green™ DCF Diacetat (Molecular Probes) [6]. Control and zinc-supplemented media were added and the increase in the fluorescence emission intensity due to the binding of intracellular free Zn2+ was measured for 48 h (Fluoroscan, Labsystems).

## RNA Isolation, Probe Labeling, Hybridization and Analysis of cDNA-arrays

Isolation of total RNA was performed using a modified phenol-chloroform extraction according to the manufacturers protocol (Clontech). <sup>33</sup>P-labeled cDNAs were synthesized using gene specific primers as described by Clontech. After hybridization of the CDNA-nylon-arrays (Atlas™ Human 1.2 Array III, Clontech) with the radiolabeled cDNA probes, the arrays were washed and exposed to the same phosphor screen for 96 h. For the quantitative analysis the signal intensity of each gene represented on the array (1176) was normalized to the total array intensity. Genes were identified as significantly modulated in expression, when the ratio in signal intensities of supplementation to control experiment was reproducibly > ±1.3 (n=3)

## Northern analysis


Equal quantities of total RNA were separated on a formaldehyde-agarose gel (5 µg and 10  $\mu g$  rsp. per lane) and transferred to a nylon membrane (Amersham). Gene specific probes were radiolabeled with  $^{32}P$ -dATP using a random-primed DNAlabeling-Kit (Amersham) and hybridized onto the nylon membranes. After washing, the membranes were exposed to a phosphor screen.


#### Real-time RT-PCR

Total RNA was reverse transcribed according to a standard protocol and the resulting cDNAs were applied to real-time PCR. The sequence information for the gene specific PCR primers was obtained from Clontech. Real-time PCR reactions were performed with SYBR Green I (Molecular Probes) chemistry in a LightCycler (Roche). The authenticity of the PCR products was verified by melting curve analysis and agarose gel electrophoresis. cDNA quantities were normalized to GAPDH quantities obtained from the same sample.

#### Results I

To investigate the effects of altered zinc concentrations in HT29 cells, cells were cultured for 72 h in two different media (control: 0.25 ppm zinc; supplementation: 10 ppm zinc). The conditions proved to change the intracellular zinc concentration shown by increased intracellular free zinc and by the zinc-modulated expression of metallothionein 1 (MT-1) (Fig. 1/2).





#### Results II

The screening for zinc-sensitive genes was performed using arrays, which were hybridized with radioactive labeled cDNAs from cells with either normal or high zinc concentration (Fig. 3). The arrays were analyzed using phosphor screens. In HT29 cells grown under high zinc conditions, 17 genes with altered mRNA levels were identified (Tab. 1). For selected genes the altered mRNA levels were verified by Northern analysis (Fig. 4) and quantitative RT-PCR (data not shown). The investigated genes are summarized in Table 2.

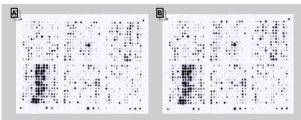
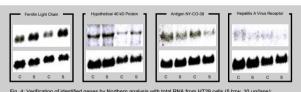




Fig. 3: Phosphor images of cDNA-arrays (Clontech), hybridized wi A: Control (0.25 ppm Zn), B: Supplementation (10 ppm Zn)

#### Tab. 1: List of identified genes

| Gene name                                           | GenBank acc. # | Position | Regulation in high-zinc cells | Function             |
|-----------------------------------------------------|----------------|----------|-------------------------------|----------------------|
| Zinc Finger Protein HSAL2 (Fragment)                | X98834         | A08h     | 1,73x                         | Transcription        |
| Dead Box Protein 3, Y-Chromosomal                   | AF000985       | B02d     | 3,37x                         | Transcription        |
| Heterogeneous Nuclear Ribonucleoprotein M           | L03532         | B02g     | 1,41x                         | Transcription        |
| Cleavage Stimulation Factor, 64 kD Subunit          | M85085         | B03a     | 1,48x                         | Transcription        |
| Thymopoietin Alpha                                  | U09086         | B05i     | 1,83x                         | Hormone metabolism   |
| Complement Component C7 Precursor                   | J03507         | B07i     | 1,50x                         | Immune system        |
| Microfibril-Associated Glycoprotein Precursor       | U19718         | C02a     | 1,60x                         | Matrix protein       |
| Nuclear Autoantigenic Sperm Protein                 | M97856         | C04b     | 1,69x                         | Trafficking          |
| Ferritin Light Chain                                | M11147         | C06a     | 1,59x                         | Iron metabolism      |
| Lamin B Receptor                                    | L25931         | E02i     | 2,04x                         | Nuclear lamina       |
| RAS-Related Protein R-RAS3                          | AF022080       | E08g     | 1,46x                         | Signal transduction  |
| 26S Proteasome Regulatory Subunit S14 (P31)         | D38047         | E13k     | 1,42x                         | Protein degradation  |
| Hypothetical 40.0 kD Protein                        | D29810         | F09I     | 1,61x                         | Unknown              |
| Hepatitis A Virus Cellular Receptor 1               | AF043724       | A01f     | -1,34x                        | Cell surface antigen |
| Creatine Kinase, Ubiquitous Mitochondrial Precursor | J04469         | D01e     | -1,52x                        | Energy metabolism    |
| Gastrointestinal Peptide                            | AF048700       | F01c     | -1,64x                        | Insulin secretion    |
| Antigen NY-CO-37 (NY-CO-38)                         | AF039699       | F14m     | -1,49x                        | Unknown              |



Verification of identified genes by Northern analysis with total RNA from HT29 cells (5 bzw. 10 µg/lane); the upper row shows the regulation of several zinc-sensitive genes, the lower row shows control hybridizations with GAPDH cDNA probe to verify equal loading C = Control (0.25 ppm Zn), S = Supplementation (10 ppm Zn)

# Tab. 2: List of verified genes

| Gene name                                 | verified by   | Regulation in high-zinc cells |
|-------------------------------------------|---------------|-------------------------------|
| Zinc Finger Protein HSAL2 (Fragment)      | Real-time PCR | 1,62x                         |
| Heterogeneous Nuclear Ribonucleoprotein M | Real-time PCR | 1,29x                         |
| RAS-Related Protein R-RAS3                | Real-time PCR | 2,39x                         |
| Ferritin Light Chain                      | Northern Blot | 1,45x                         |
| Hypothetical 40.0 kD Protein              | Real-time PCR | 1,41x                         |
|                                           | Northern Blot | 1,35x                         |
| Hepatitis A Virus Cellular Receptor 1     | Real-time PCR | -2,86x                        |
|                                           | Northern Blot | -1,29x                        |
| Gastrointestinal Peptide                  | Real-time PCR | -5,13x                        |
| Antigen NY-CO-37 (NY-CO-38)               | Northern Blot | -1,28x                        |

# Summary

Searching for zinc-sensitive genes which may serve as biomarkers for the assessment of the zinc status in vivo, the condition of zinc excess was simulated in vitro. The screening using cDNA-arrays has shown, that the experimental conditions caused altered expression of about 1 % of the represented genes on the array. The modulated expression of eight genes was verified independently by Northern analysis and quantitative polymerase chain reaction. The identified zinc-sensitive genes are members of different functional classes, which indicates, that increased cellular zinc levels may influence several metabolic functions simultaneously. In summary, the established reporter cell system and the cDNA-array-technology may provide a tool for the identification of zinc-modulated genes, which may be useful to . assess the zinc status of mammalian cells

## References

- [1] Pinna, K., Woodhouse, L.R., Sutherland, B., Shames D.M. & King J.C. (2001) J. Nutr. 131, 2288
- [2] Cao, J. & Cousins, R.J. (2000) J. Nutr. 130, 2180-2187 [3] MacDonald, R.S. (2000) J. Nutr. **130**, 1500-1508

- [4] He, Y.D. & Friend, S.H. (2001) Nature Medicine 7, 658-659.
- [5] Blanchard, R.K., Moore, J.B., Green, C.L. & Cousins, R.J. (2001) Proc. Natl. Acad. Sci. USA 98, 13507-13513
- Yin, H.Z., Carriedo, S.G., Rao, S.S. & Weiss, J.H. (1999) Proc. Natl. Acad. Sci. USA 96, Sensi, S.L., 2414-2419