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INTRODUCTION

The development of staging procedures for breast
cancer aimed at the identification of distinct, homoge-
neous patient categories with different chances of bene-
fiting from treatment has a long history. However, within
the same TNM stage, patient outcome may still be highly
variable, depending on differences in aggressiveness be-
tween tumors. For this reason, there is strong interest in
the study of tumor markers to better discriminate subjects
with different risks of disease recurrence and likelihood
of responding to tailored adjuvant systemic treatments.
Although several markers have been evaluated or are still
under investigation, very few of them are considered
clinically useful for predicting patient outcome or re-
sponse to treatment (1, 2). Therefore, in spite of the con-
tinuous progress in the molecular biology of cancer, clin-
ical decision-making still largely relies on pathological
staging and grading procedures; in the case of breast
cancer, there is a clear gap between the resources em-
ployed for basic and translational research on tumor
markers and actual patient benefits and overall social
gain.

The aim of this note is to provide an overview of the
guantitative aspects related to the design and analysis of
prognostic factor studies, and to show their critical role
in determining the level of evidence of the results
achieved. Several reviews have already been published
to promote “good statistical practice” in tumor marker
studies (3-6). Related issues will be reconsidered with
emphasis on peculiar aspects of retrospective studies. To
show the possible risks underlying the statistical evalua-
tion of this kind of study, an example will be discussed in
detail.
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QUANTITATIVE ASPECTS IN PROGNOSTIC FACTOR
ANALYSIS

Measurement scales

The issue of the reliability of tumor marker measure-
ment has been widely addressed. Statistical methods
play a key role in assay development and validation of
the analytical performance of quantitative biochemical
assays and qualitative pathological examination. In addi-
tion, quality control guidelines must be implemented for
routine measurements, including internal quality control
to confirm the stability of the precision and accuracy
specifications that were determined in the validation
phase, and external quality control, to assess the relative
and absolute accuracy of assays in different laboratories
by measuring the same reference samples (7).

A key point to be addressed is how the information
provided by tumor markers in statistical models should
be managed. The dichotomization of the measure into
two groups (high vs low or positive vs negative) on the
basis of a threshold value is still frequently applied. In
principle, the cutoff point should be defined on the basis
of sensible biological and/or clinical reasons. If these are
not available, as is often the case, other criteria are
adopted, a frequent one being the median value of mark-
er distribution. However, there is no a priori reason to
expect that exactly half of the patients, belonging to a
group on the basis of the ordered values of the variable,
have a better prognosis than the other half. In any case,
before dichotomizing a continuous variable one should
verify that the prognostic information provided by the
variable in the original measurement scale is still ade-
quately represented after dichotomization. It has been
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shown that a substantial loss of information may occur
when models with dichotomized variables are used in
the absence of a reliable threshold in the underlying rela-
tionship between prognosis and the variable itself (8).

The quantitative scale provides the largest amount of
information, while the categorization of measurements
from a quantitative to a qualitative scale necessarily in-
volves a loss of information that cannot be subsequently
retrieved. These aspects must be taken into consideration
when choosing the measurement scale by means of
which data will be expressed.

Outcome measures

A quantity which is typically considered in the analy-
sis of survival data is the event rate (A). For a homoge-
neous population this rate is defined as the ratio between
the number of observed events and the sum of the times
during which the subjects were exposed to the risk of de-
veloping the event. This definition implies the need to
consider the rate of appearance of the event as constant
during the follow-up of the population under study. This
assumption may be correct for some events, such as the
occurrence of a contralateral tumor, but not for others,
e.g. the appearance of distant metastases after breast can-
cer surgery. In the latter case it is necessary to divide the
time of the study into intervals and calculate the risk rate
for each interval. Considering intervals of decreasing size
(i.e., tending to zero), an “instantaneous” estimate of the
rate is obtained which is called hazard. The hazard is a
useful measure for the clinician as it provides information
about the relative speed of the occurrence of the event in
time with reference to the number of studied subjects.

Regression models are adopted for the study of the
relationship between the hazard and tumor/patient char-
acteristics. The classical approach for the evaluation of
the prognostic impact of tumor markers is the Cox model
(9); it assumes a linear relationship between the loga-
rithm of the hazard of an event and the covariates (prog-
nostic factors).

Given the i-th subject with x;; observed values for
the j-th variable (j=1,2,---,J), the Cox model can be
written as:

o Alt.x,)

g AU(Z) - lefﬁ,l
where A (t,x;) is the hazard as a function of time and co-
variates, where Ay(t) is the event hazard for the category
of subjects that have the value O for all the j covariates
considered (reference category) and the regression coeffi-
cients B; provide the estimate of the logarithm of the haz-
ard ratio.

The standard formulation of the Cox model clearly
implies that the ratio between the hazards is constant in
time (proportional hazard); however, this assumption is
not generally true and it should be carefully evaluated on

a case-by-case basis. In the absence of proportional haz-
ards, time-dependent effects can be considered in the
Cox model. Since this model does not provide estimates
of the hazard function, it is not a suitable choice to in-
vestigate disease dynamics or to make outcome predic-
tions. Other flexible approaches may be adopted in an
exploratory context, allowing assessment of the shape of
the hazard function and the effects of continuous covari-
ates (10, 11).

PROGNOSTIC AND PREDICTIVE FACTORS

According to the definition provided by Hayes et al
(12), prognostic factors are associated with either the
metastatic or the growth rate potential of the primary tu-
mor. Predictive factors are associated with relative sensi-
tivity and/or resistance to specific therapeutic agents. The
same factor may be both prognostic and predictive. A
pure prognostic factor discriminates between poor and
favorable prognosis, independent of therapy. A pure pre-
dictive factor does not indicate the prognosis of untreat-
ed patients. However, in the presence of the specific
treatment for which the factor predicts sensitivity or resis-
tance, patient outcome will be different according to the
values of the said factor.

Pure prognostic factors are associated with the natur-
al history of the disease, for example the metastatic in-
volvement of axillary lymph nodes. The estrogen recep-
tor (ER) protein content of the primary tumor, on the oth-
er hand, has a predictive and a (minor) prognostic role.
Patients with a high ER content in their tumors are much
more likely to benefit from hormone therapy than those
with low ER. Moreover, patients with low-ER tumors
have a higher risk of relapse and death than those with
high-ER tumors, thus indicating also the prognostic role
of this marker.

Figure 1 reports different situations related to the role
of the biomarker whose presence is protective. The up-
per panels (A, B, C) illustrate the situation where there is
no treatment effect in subjects with negative marker lev-
els, whereas in the lower panels (D, E, F) the treatment is
effective also in subjects with negative marker levels.
Panels A and D correspond to a pure prognostic effect of
the marker, panels B and E to a pure predictive effect,
and panels C and F to a combined prognostic/predictive
effect. The situation of Figure 1C could represent the ef-
fect of estrogen receptor status and hormone therapy; in
this situation the marker has a (slight) protective prognos-
tic role (at least at early follow-up), whereas ER+ subjects
are much more likely to respond to hormonal therapy,
with a marked decrease in their risk.

The predictive effect is equivalent to the pharmaco-
logical concept of synergism (antagonism), namely, the
combination of two factors (treatment and marker) pro-
duces a higher (lower) effect than the sum of the separate
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effects of the two factors considered singly.

Prognostic and predictive effects can be statistically as-
sessed by means of a Cox regression model, which in its basic
form considers the treatment and the marker of interest:

0 M=BMXM+:BTXT+BMTXM*XT
Ao()

including one term, By, for the effect of the marker, an-
other, By, for the effect of treatment, and a third interac-
tion term, By, for the synergistic effect between treat-
ment and marker. The interaction accounts for departures
from the sum of the two separate effects of treatment and
marker, which would be expected if the marker was not
predictive (absence of synergism).

For each patient the marker status is coded as =0
if negative and xy,=1 if positive; treatment is coded as
X7=0 if absent and x;=1 if present, and the interaction is
given by the product of the two variables x,,*x;. With
this coding scheme there will be four possible combina-
tions (shown in Table 1), which characterize four patient

T restriiani
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groups according to marker and treatment status.

Figure 2 graphically reports the expected results of
the Cox model in the different situations; these are de-
scribed in detail in Table II.

More complex situations may also be considered, in-
cluding markers with an unfavorable prognostic role and
a favorable effect on therapy. In such cases the reversed
situation is observed when treatment is applied. This is
the so-called qualitative interaction effect, which is
graphically represented in Figure 3. Such a situation

TABLE |

Group Xm Xt XXt
1 0 0 0

2 0 1 0

3 1 0 0

4 1 1 1

TABLE 1l

Situation Treatment Prognostic marker Predictive marker
(A) Ineffective Br=0 YES Bm <O NO Byt =0

(B) Ineffective Br=0 NO By=0 YES BT <0

(©) Ineffective Br=0 YES Bm <O YES BuT <O

(D) Effective Br<0 YES B <O NO BT =0

(E) Effective Br<0 NO Bv=0 YES BuT <O

P Effective Br<oO YES Bpm <O YES BuT <O
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could correspond, for example, to the relationship be-
tween c-erbB-2 and therapy with trastuzumab (Her-
ceptin), which is targeted to this type of marker.

A single dichotomous marker was considered in the
above examples. In the case of markers measured on a
continuous scale the situation is much more complex be-
cause of the possible departures from linearity of the ef-
fects of the marker and of the interaction with treatment
which need to be investigated. Nevertheless, a detailed
study of continuous relationships may lead to an im-
provement of the decision criteria for a therapeutic strat-
egy. For example, the optimal cutoff value for the levels
of estrogen receptors that are required for efficacious
hormonal therapy is still debated today. Very few studies
have tackled this problem by considering the effect of ER
measured on a continuous scale.

STUDY DESIGN

A general problem of prognostic factor studies is
their lack of standard design criteria. As a consequence,
results may be contradictory, and although several stud-
ies regarding the same marker may be available, these
have limited clinical and biological impact.

Criteria for the design of tumor marker studies have
been proposed by Simon and Altman (3) and were subse-
quently revised by Altman and Lyman (4), who also pro-
posed a classification of the different types of study into
four classes:
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Fig. 3 - Graphical representation of a qualitative interaction effect.

1) phase | - exploratory (hypothesis generating) studies
evaluating the association between new markers and
recognized prognostic factors;

2) phase Il - exploratory studies of the prognostic dis-
crimination ability of the new marker or the response
to therapy;

3) phase Il - confirmatory study of prior hypotheses re-
garding prognosis or response to therapy; such stud-
ies are aimed at investigating the additional prognos-
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tic contribution of a new factor to those already es-

tablished;

4) studies for the development of outcome prediction
models, combining the information of several prog-
nostic variables to maximize the prognostic accuracy
for groups and individual patients.

In our opinion the last category can be further divid-
ed into three subclasses, namely
4a) pilot studies, based on medium-sized case series (ra-

tio between number of model terms and events

around 1/10), evaluating the feasibility of develop-
ment studies for outcome prediction models;

4b) development studies, based on large case series re-
cruited on an institutional or regional basis (ratio be-
tween number of model terms and events higher
than 1/10);

4c) validation studies, to assess the prognostic accuracy
of outcome prediction models on new independent
case series.

Prognostic factor studies can be prospective or retro-
spective; although the former are to be preferred, most
are retrospective. The advantage of the latter is that
medium- to long-term follow-up information may be al-
ready available. Disadvantages are related to possible se-
lection biases due to missing data and the unavailability
of stored specimens for marker determination. Retrospec-
tive studies may consider heterogeneous case series with
respect to baseline clinical features and/or therapeutic
strategies. For this reason, statistical analyses are not
straightforward and their results may be difficult to inter-
pret. A careful study design is needed for retrospective
studies as well as for prospective ones.

Randomized controlled studies are reliable tools for
the evaluation of therapeutic strategies. To improve the
reliability of tumor marker studies, an approach similar
to the design of randomized clinical trials should be
adopted. This means that a study protocol should be pre-
pared which clearly states the objectives of the study, in-
cluding a rationale, and which explains the hypotheses
to be tested. According to these points, patient inclusion
and exclusion criteria must be specified for both
prospective and retrospective studies, so that it is clear to
which population of patients the results refer. Prognostic
factors relevant for the study must be specified together
with the methods adopted for their assessment (analytical
methods for tumor markers). The outcome variable must
be defined and the way in which it is assessed should be
specified. The strategies for data analysis must be indi-
cated and, finally, the criteria for interpretation and use
of the results should be included.

Studies on pure prognostic factors should only be
performed on series of patients who did not receive sys-
temic therapy. If a marker is evaluated in patients who
underwent a specific systemic treatment, it is not possi-
ble to disentangle pure prognostic effects from the re-
sponse to therapy. Studies should therefore be limited to
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assessing whether the marker discriminates prognosis in
patients treated with the specific therapy, without making
any inference regarding the type of effect. When an in-
teraction between treatment and marker exists, combin-
ing treated and untreated patients in analyses of potential
prognostic factors makes it impossible to separate predic-
tive from prognostic effects.

According to the above considerations, in retrospec-
tive evaluations the evidence of the predictive role of a
marker with respect to a specific treatment should be as-
sessed on the basis of comparison with a suitable control
group in the context of a randomized clinical trial,
whereas suitable designs have been proposed for
prospective randomized studies (13).

Investigators might be interested in determining
whether specific factors identify subsets of patients who
do or do not benefit from an experimental treatment.
However, statistical analyses of treatment effects in pa-
tient subsets identified by marker status are often unreli-
able. A suitable approach is to test directly for the pres-
ence of the interaction between treatment and the mark-
er of interest. This is equivalent to a test for the homo-
geneity of treatment effects in the subgroups defined by
marker status, which is more appropriate than separate
tests for treatment effects in the same subgroups. Howev-
er, it should be noted that clinical trials are seldom de-
signed to test specific interactions of treatment with prog-
nostic factors. This problem is particularly clear when
marker measurements are done retrospectively on pre-
served specimens. The study may fail to highlight rele-
vant interaction effects because they were not consid-
ered in the original design. Moreover, if several markers
are considered in the same study, multiple interaction
tests must be performed with caution because of the risk
of spurious results which could occur by chance alone
(see next section for statistical details). In this respect,
suitable techniques have been proposed and applied to
biological markers in breast cancer for the evaluation of
response to alkylating agent-based adjuvant therapy
(CMF) (14). Special attention should be paid to the con-
clusions of interaction analyses, which should be consid-
ered at an exploratory level unless the study was de-
signed to test specific interactions between treatment and
markers.

STATISTICAL INFERENCE
Testing hypotheses

In experimental studies the inductive approach is
adopted to infer general properties of a population from
the data of a sample of individuals belonging to the same
population. Therefore, sampling variability affects the re-
sults; given the treatment and assuming that the marker is
measured without error (this is not generally true), pa-
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tients within the same treatment group with equal marker
status have heterogeneous outcomes due to the inherent
biological variability which cannot be controlled. Statis-
tical hypothesis testing deals with such variability by as-
sociating a certain degree of uncertainty to the state-
ments regarding the results of the study. The scheme of
hypothesis testing (null hypothesis Hy: B=0) for the ex-
ample regarding the effects of treatment and marker is re-
ported in the following Table III:

TABLE 111

“Truth”
Decision

True Hy: B=0 False Ho: 70

Do not reject Hy Correct decision Type Il error
(False negative)

(Probability B)

Correct decision
(Probability 1-:
power of the test)

Reject H, Type | error
(False positive)
(Probability a:
statistical

significance)

Many reported biomarker results in the literature are
either falsely negative or falsely positive. The power of
the test is the probability of detecting an effect when it re-
ally exists. Increasing the sample size increases power.
Most studies of potential prognostic or predictive factors
have low power, therefore a non-significant result may re-
flect a lack of statistical power rather than absence of the
effect. Evaluation of a potential predictive biomarker is
much more difficult than evaluation of a new therapy.
The status of biomarkers cannot be randomized, and their
imbalance must be taken into account. A test for an inter-
action between response to treatment and biomarker sta-
tus usually requires many more events than a test for a
treatment effect. Biomarker studies are often adjuncts to
already completed randomized clinical trials that were
designed to compare treatments. The subsets of patients
with biomarker data are generally smaller than the ran-
domized groups that received the treatments; therefore,
given the hypothesis of a random unbiased selection of
subjects with available measurements, at least the statisti-
cal power is reduced. As a result, most studies of potential
predictive biomarkers may produce false-negative results.

However, many of the results about biomarkers in
the literature are probably false-positive as a conse-
quence of multiple tests of hypotheses. Performing subset
analyses often leads to statistically significant results by
chance alone. For example, this problem affects empiri-
cal attempts to identify a cutoff point to split biomarker
measures into high-and low-risk categories on the basis
of statistical significance alone.

AN EXAMPLE: c-erbB-2 AND RESPONSE TO ALKYLAT-
ING AGENT-BASED ADJUVANT THERAPY

Several studies addressed the question whether
breast cancer patients treated with adjuvant CMF have a
different benefit depending on the c-erbB-2 status of their
tumors. In accordance with the considerations of the pre-
ceding paragraphs, only studies involving a control
group without adjuvant treatment will be considered
hereafter. We will discuss in particular the results of three
studies involving retrospective determination of c-erbB-2
in patients recruited to randomized phase Il clinical tri-
als on chemotherapy, which potentially address the role
of this marker as a predictor of the response to therapy.
These studies were originally quoted in the review article
of Yamauchi et al (15), who presented a case study of c-
erbB-2 as a predictive factor in breast cancer.

In the first study of the ECOG/US Intergroup (16), 406
node-negative patients were randomized to receive either
CMF with prednisone (CMFp, n=160 with c-erbB-2 deter-
mination by immunohistochemistry, IHC) or no systemic
therapy (no ST, n=146 with c-erbB-2 determination). The
authors performed separate log-rank statistical tests to eval-
uate the difference between the survival curves of patients
in the two treatment arms according to c-erbB-2 status. Pa-
tients with c-erbB-2-negative tumors (231/306, 75.5%)
showed a significant (p=0.003) improvement in disease-
free survival (5-year DFS: c-erbB-2 negative, no ST. 58%;
c-erbB-2 negative, CMFp: 80%) while patients with c-erbB-
2-positive tumors (75/306, 24.5%) showed a non-signifi-
cant improvement in DFS (5-year DFS: c-erbB-2 positive,
no ST: 68%, c-erbB-2 positive, CMFp: 78% ). It is worthy of
note that in this study patients with c-erbB-2-positive tu-
mors with no ST had better outcomes than c-erbB-2 nega-
tive patients, which was in agreement with the uncertain
prognostic role of this tumor marker in node-negative
breast cancer patients.

In the Guy’s Hospital prospective randomized trials
of adjuvant CMF therapy versus no therapy, specimens
from 274 node-positive women (70% of 391 patients in
the original trial) were evaluated for c-erbB-2 status by
IHC (17). Of these patients 129 received 12 cycles of
CMF and 145 received no ST. Both c-erbB-2-positive and
negative patients gained benefit from adjuvant CMF.
However, women whose tumors did not overexpress
c-erbB-2 (191/274, 70%) had a significantly improved
survival related to therapy (9-year overall survival: c-
erbB-2 negative, no ST: 42%; c-erbB-2 negative, CMF:
65%; p=0.0014), whereas the difference between treated
and untreated c-erbB-2-positive patients (83/274, 30%)
did not reach conventional statistical significance (9-year
OS: c-erbB-2 positive, no ST: 25%, c-erbB-2 positive,
CMF: 42%; p=0.08).

In the prospective randomized trials of adjuvant CMF
therapy versus no therapy conducted by the Istituto
Nazionale Tumori of Milan, specimens from 337 node-
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positive women (87% of 386 patients in the original trial)
were evaluated for c-erbB-2 status and for other tumor
markers by IHC (complete information was available on
at least 324 cases) (14). Of these cases, 186 received 12
cycles of CMF and 151 received no ST. Statistical analy-
sis directly investigated the interaction between adjuvant
treatment and c-erbB-2 status. As interactions of treat-
ment with several biomarkers were also considered in
the Cox regression model, a Bayesian method was ap-
plied to avoid the application of multiple statistical tests.
Results were reported as hazard ratios of CMF vs no ST.
For relapse-free survival (RFS), the HR for c-erbB-2-posi-
tive patients (54/337; 16%) was 0.484 (0.284-0.827,
95% highest posterior density interval) and for c-erbB-2-
negative patients (283/337; 84%) it was 0.641 (0.481-
0.853, 95% HPD). Considering the cause-specific breast
cancer survival (CSS), the HR for c-erbB-2-positive pa-
tients was 0.495 (0.287-0.853, 95% HPD) and for
c-erbB-2 negative patients 0.730 (0.537-0.991, 95%
HPD). These results support the evidence of the protec-
tive role of CMF on the RFS and CSS of the patients re-
gardless of the c-erbB-2 status of their tumors.

Application of statistical inference concepts

To illustrate the application of statistical inference to
the response to therapy, we will comment on the paper
by Miles et al (17) regarding the Guy’s Hospital trial. Fig-
ure 1 of this paper reports the overall survival curves ac-
cording to treatment in the subgroups defined by c-erbB-
2 status. The right part of the graph shows the value of
the x? test statistic for the difference between curves, the
corresponding p-values, and the number of patients in
each subgroup defined by treatment and c-erbB-2 status.
A p-value of 0.0014 in the c-erbB-2-negative subgroup
represents the probability of a false-positive result (Type
1 error), i.e., the probability of stating that the survival
curves are different only by chance when they are really
equal because the treatment has no effect. Since this
probability is very low, it is reasonable to assume that the
curves are different and the treatment was effective in
improving survival. If we look at the c-erbB-2-positive
subgroup, the x? test statistic is much lower and a p-val-
ue of 0.08 is observed; therefore, with regard to this sub-
group the probability of being wrong in declaring that
the treatment was effective is higher because, if there
was no effect of therapy in the same experimental condi-
tions, the observed difference between survival curves
would have occurred on average in 8% of times only by
chance. This means that the null hypothesis of absence
of treatment effect cannot be safely rejected. Now the
question is whether a p-value of 0.08 in the c-erbB-2-
positive subgroup, in the conditions of the Guy’s Hospi-
tal trial, implies that the null hypothesis can be safely ac-
cepted, thus supporting the evidence of no effect of alky-
lating agent-based adjuvant therapy on c-erbB-2-positive
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patients. To verify the last point, we should consider the
type Il error probability, i.e., the risk of false negative re-
sults on the effect of therapy; before saying that there is
evidence for the null hypothesis, it should be verified
that the risk of stating no effect of therapy when it is ac-
tually effective is rather low. Unfortunately, this point is
seldom considered either in subgroup analyses of clini-
cal trial data or in critical reviews of the literature. In the
example of the Guy’s Hospital trial, we made an attempt
at estimating the Type Il error in the c-erbB-2-positive
subgroup by reconstructing original survival times from
the graph of Kaplan-Meier survival estimates. Following
application of the approach proposed by Schoenfeld (18)
for the difference between survival curves, we estimated
a Type Il error probability of about 0.4; that is, if alkylat-
ing agent-based adjuvant therapy was also effective for
c-erbB-2-positive patients, on average, in the same ex-
perimental conditions, we would be able only about
60% of times to correctly reject the null hypothesis of no
effect of therapy. This is the so-called power of the statis-
tical test, which is typically fixed around 80-90% in clin-
ical trials; in the subgroup analysis for c-erbB-2-positive
patients of the Guy’s Hospital trial it is unacceptably low.
Such a low power is partly due to the distribution of pa-
tients for c-erbB-2 status, since positive tumors are much
less frequent than negative ones.

A better approach would have been to test directly for
the interaction between c-erbB-2 status and therapy.
However, also this test would be likely to be underpow-
ered, as the original trial was not specifically designed for
testing the above interaction. The bottom line is that we
cannot obtain conclusions from such analyses but only
evidence for the hypotheses regarding treatment effect in
patient subgroups. The critical aspect is the weight to be
given to such evidence. The difference between statistical
significance and practical relevance of a studied effect
must be underlined. In the context of the example, p-val-
ues are used as a measure of evidence of the effect of in-
terest: the smaller the p-value, the stronger is the evi-
dence. It could be questioned whether p-values are a
good measure of evidence (19), but we will not consider
that aspect here. The use of p-values as a measure of evi-
dence is different from the pure logic underlying statisti-
cal hypothesis testing; in the latter case the experiment is
designed for rejecting or not rejecting the null hypothesis
after fixing the a-level of type | error (typically 5%) and
the power of the test (typically 80-90%); in such a con-
text, actual p-values may not be reported because only
the test decision is relevant (p<a or p>a); in the ex-
ploratory analysis framework small p-values may occur
because large case series are considered with enough in-
formation to highlight even small effects of little practical
importance. By contrast, if little information is available,
as in the case of the subgroup of c-erbB-2-positive pa-
tients of the Guy’s Hospital trial, important effects may
have high p-values only because the study is underpow-
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ered. Therefore, the following aphorism is helpful: “Statis-
tical significance does not imply practical importance and
the lack of statistical significance (evidence) of an effect
cannot be assumed as evidence of the lack of effect”.

In addition to statistical significance, an estimate of
the effect should be provided so as to allow assessment
of its practical importance. According to the above con-
siderations about the uncertainty of decisions regarding
statistical hypotheses, also the estimate of the effect is
uncertain, therefore a measure of such an imprecision
should be provided. The use of confidence intervals has
the advantage of providing a range of values in which
the true effect lies, with a fixed confidence (probability of
being right), in making such a statement. In the case of
the subgroup of c-erbB-2-positive patients of the Guy’s
Hospital trial, we estimated a treatment effect of 0.64
measured as hazard ratio under the proportional hazards
assumption, with 95% confidence intervals: 0.38-1.07.
As regards the subgroup of c-erbB-2-negative patients,
from the estimated survival curves we calculated a haz-
ard ratio of about 0.45, which is contained in the above
confidence interval; therefore, the evidence of a different
effect of alkylating agent-based adjuvant therapy accord-
ing to c-erbB-2 status appears difficult to uphold on the
basis of the Guy’s Hospital trial results. Similar consider-
ations about the results of a subgroup analysis concerning
the same problem have been provided by Simon and Alt-
man (3) with regard to the study by Gusterson et al (20).

Treatment guidelines on alkylating agent-based adjuvant
therapy according to c-erbB-2 status

The College of American Pathologists Consensus
Statement 1999 (21) reported three different categories of
prognostic factors according to specific rules: category |
factors are proven to be of prognostic importance and
useful in clinical patient management; category Il factors
have been extensively studied biologically and clinically,
but their importance remains to be validated in statisti-
cally robust studies; category Il groups all factors not
sufficiently studied to demonstrate their prognostic value.

The tumor marker c-erbB-2 belongs to category II,
given the issues discussed above. c-erbB-2 is considered
to be associated with lower responsiveness to methotrex-
ate-based treatment regimens; however, several ques-
tions have been raised regarding the standardization of
c-erbB-2 analysis.

The 2000 Update of Recommendations for the Use
of Tumor Markers in Breast and Colorectal Cancer: Clini-
cal Practice Guidelines of the American Society of Clini-
cal Oncology (1) in the paragraph “Response to Cy-
clophosphamide/Methotrexate/Fluorouracil or Nonan-
thracycline-Based Adjuvant Chemotherapy”, after re-
viewing the literature, states that, “The question of
whether c-erbB-2 overexpression affects the relative ben-
efit of adjuvant CMF chemotherapy remains open, and

the Update Committee cannot make a definitive practice
recommendation at present.”

In their review article Yamauchi et al (15) referred to
the results of the Guy’s Hospital study (17) with the fol-
lowing statement: “Two conclusions can be reached
from this study. The results support the role of c-erbB-2
as a negative prognostic factor, because untreated c-
erbB-2-positive patients had worse DFS and OS than c-
erbB-2-negative patients independent of therapy. More-
over, although within each expression group one can ob-
serve benefit from adjuvant CMF treatment versus no
treatment, the magnitude of benefit seems larger for
those whose tumors are c-erbB-2 negative.”

Referring to the Milan study (14), Yamauchi et al (15)
report: “In contrast, c-erbB-2 analysis of patients that were
included in the Milan CMF versus observation trial has pro-
duced contradictory results. () Indeed, if anything, c-erbB-
2-positive patients were more likely to benefit.”

CONCLUSIONS

The reader is invited to re-examine the statements of
the above guidelines and reviews according to the few
basic statistical principles provided in this paper, in order
to decide whether the claimed evidence regarding c-
erbB-2 and response to alkylating agent-based adjuvant
therapy has to be reconsidered.

An incontrovertible aspect is the lack of conclusive
evidence. If the statistical principles considered in this
paper were applied at least to the review of the literature,
in the authors’ view, the evidence of a different effect of
alkylating agent-based adjuvant therapy according to c-
erbB-2 status would have received less support and the
results of the Milan study (14) would not have been con-
sidered contradictory.

Overall, balanced conclusions of such studies and
their reviews should stress the need for suitably designed
trials to obtain conclusive evidence regarding treatment
strategies according to marker status. Such considera-
tions, based on a relevant problem in adjuvant therapy
for breast cancer, can be extended to analyses of the
prognostic and predictive role of other biomarkers. The
issues discussed in the present paper appear highly rele-
vant when the impact of inappropriate evaluation of bio-
marker data is considered in terms of suboptimal thera-
pies and research costs.
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