
The International Journal of Biological Markers, like
many other biomedical journals dealing with cancer re-
search, often publishes papers whose principal aim it is to
test the association between quantative measurements of
biological variables. When these are expressed on contin-
uous scales, the statistics most frequently adopted to test
their association are the Bravais-Pearson (parametric) and
the Spearman (non-parametric) correlation coefficients. In
this note the correlation coefficient estimate (statistic) will
be denoted by the Latin letter r, while the “true” correla-
tion coefficient (parameter) of the underlying population
will be denoted by the Greek letter ρ.

The Bravais-Pearson correlation coefficient (ρBP) is a
suitable measure of association when n couples of con-
tinuous data ((yi, xi) with i=1,2,…n), collected on the
same experimental unit, follow a bivariate normal distri-
bution. In this case the only relationship that can be pos-
tulated is the linear one. Two different regression lines
(see Fig. 1) can be defined: the first (l1) corresponding to
the linear regression of y on x and the second (l2) corre-
sponding to the linear regression of x on y. The two
straight lines intersect at a point whose coordinates are
the means of the observed yi and xi, respectively; this

point is the vertex of an angle θ, defined by l1 and l2,
which is an expression of the strength of the linear asso-
ciation between y and x. The Bravais-Pearson correlation
coefficient (ρBP) is the geometrical mean of the slopes of
the two regression lines and corresponds to the cosine of
θ. In absence of association the two straight lines are per-
pendicular (θ = 90°), so that ρBP = cos 90° = 0. When
there is a complete association the two straight lines
overlap: if the resulting single straight line has a positive
slope (i.e. y increases with increasing values of x), θ = 0°
and ρBP = cos 0° = 1; if it has a negative slope (i.e. y de-
creases with increasing values of x), θ = 180° and ρBP =
cos 180° = -1. 

The Spearman correlation coefficient (ρS) is usually
adopted when the assumption of the bivariate normal
distribution is not tenable. It is known that ρS is comput-
ed as ρBP, changing the integer 1,2,…n to y1,y2,…yn ac-
cording to their relative magnitude; the same procedure
is performed for x1,x2,…xn. This transformation makes it
possible to move from the scales in which the original
data are collected towards the same scale, i.e. that of
ranks. The ranks do not follow the normal bivariate dis-
tribution and therefore the correlation coefficient cannot
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Fig. 1 - Geometrical interpretation of the Bravais-Pearson correlation
coefficient.

Fig. 2 - Monotonic relationship between data on original scales and  cor-
responding linear relationship between data expressed on rank scale.
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be geometrically interpreted as before. Even though ρS
cannot be thought of as showing the extent of the linear
relationship between the variables underlying the ranks,
ρS can be considered an index of the general monotonic-
ity of the underlying relationship. Recall that a relation-
ship between two variables is monotonic if its graphical
representation does not show any “peaks” and “valleys”.
For example, in Figure 2 the relation yi = xi

3/2 (xi=i,
i=0,1,…20) is drawn (dot plot); this is a monotonic in-
creasing relationship between the two variables. After re-
placing yi and xi with the corresponding ranks, the mo-
notonicity of their relationship implies a linear relation-
ship between the corresponding ranks, as shown by the
straight line (diamond plot) in the same Figure. Figure 3
may aid to better grasp the meaning of the two coeffi-
cients:
a) a straight relationship between original variables is

translated into r = 1, like for both coefficients;

b) absence of monotonicity is reflected by a null value
of both coefficients;

c) at a glance, a monotonic but not linear relation of yi
against xi on the original scales emerges. The compu-
tation of the Bravais-Pearson correlation coefficient
(rBP = 0.77) is misleading as it captures only the lin-
ear component of the relationship between the two
original variables. Instead of the “true” relationship
between the two variables (exponential in this case),
a naive reader could be led to rely upon the linear
relationship like the one drawn in the panel. The
Spearman correlation coefficient (rS = 1) on the other
hand informs the reader about the absolute monoto-
nicity which, however, can be grasped only by a
graphical representation of the values on the original
scales.
The different meaning of the two correlation coeffi-

cients should also be taken into account when conclu-

Fig. 3 - Correlation coefficients as
an expression of tendency towards
linearity and/or monotonicity.
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sions are drawn after rejection of the null hypothesis H0:
ρ = 0, where ρ is pertinent to both correlation coeffi-
cients. As regards ρBP, H0 is tested by resorting to a t-test
with n-2 degrees of freedom. Namely:

For sufficiently large sample sizes, say n>10, the same
statistic can be adopted to test the null hypothesis even
for ρS (1, 2). For sample sizes of ten or less a specific
probability table is available (3). The latter reports the
thresholds of the estimated Spearman correlation coeffi-
cient corresponding to the sampling distribution of the
Spearman correlation coefficient under H0 for α = 0.05
and α = 0.01 (two-tailed). As an example we considered
the vascular endothelial growth factor (VEGF) concentra-
tion in lysed whole blood and the platelet count reported
by Dittadi et al (4) in ten healthy subjects (data in Table I). 

The calculated values for rBP and rS (0.723 and
0.915, respectively) suggest that the relationship between
the two variables is monotonic but not strictly linear (see
Fig. 4). The authors considered ρS as measure of associa-
tion. By computing rS to test H0, the calculated value (rS
= 0.915) results to be statistically different from zero, as
rS is greater than both the tabulated thresholds (0.648
and 0.794, for n = 10) for α = 0.05 and α = 0.01 (two-
tailed test) and this implies rejecting H0. 

When an estimate of ρ is computed it is always ad-
visable to give, together with the point estimate, the per-
tinent confidence interval (CI). The latter provides a mea-
sure of precision and allows to draw conclusions about
the quantitative (clinical, biological, etc.) relevance of
the association in the underlying population.

The CI of the Bravais-Pearson correlation coefficient
is estimated by means of the transformation of ρBP sug-
gested by Fisher (z-transformation) (5). This transforma-
tion is approximately normally distributed with variance
σz

2 = 1/(n-3), independent of ρBP. The z-transformation is
not appropriate for the Spearman correlation coefficient

because the sampling distribution of this coefficient can
be defined only under H0. For sufficiently large sample
sizes, say n>5, the confidence interval of ρS can be esti-
mated by resorting to the bootstrap resampling method
(6, 7). The latter can be adopted to try to bypass the lack
of knowledge of the sampling distribution of the Spearman
correlation coefficient. The bootstrap resampling method
allows to gain better knowledge of this distribution by cal-
culating the Spearman correlation coefficient (rS

*) in a
large number (at least 1000) of bootstrap samples. These
are obtained by random resampling with replacement
from the original set of data; each of the bootstrap samples
has the same size as the original one. Among the available
bootstrapping algorithms for resampling planes, the Bias
Corrected and Accelerated (BCa) method seems to be
preferable for several reasons: no estimate of the variance
of ρS is needed, no invalid parameter values can be ob-
tained, and the corresponding coverage error is closest to
the nominal one. It is worth noting that, due to the random
resampling, the same bootstrapping algorithm applied to
the same original set of data provides similar but not ex-
actly equal results. In the appendix we report the com-
mands to run the SAS macros, available in the file jack-
boot.sas at the web site 

http://ftp.sas.com/techsup/download/stat/ (8). 

For the sake of illustration the aforementioned
SAS macros have been utilized to compute the boot-
strap CI (α=0.05) for the Spearman correlation coef-
ficient on the data by Dittadi et al (4) and reported in
Table I. By applying the BCa bootstrap resampling
method to 1000 bootstrap samples, we obtained an
approximate CI for rS equal to 0.65 |—-| 1.00. 

APPENDIX

Below we report the SAS commands to be run for
computing the confidence interval (α=0.05) of the
Spearman correlation coefficient to evaluate the as-

TABLE I - VEGF CONCENTRATION IN LYSED WHOLE BLOOD AND
PLATELET COUNT IN TEN HEALTHY SUBJECTS

Subject ID VEGF Platelet
(pg/mL) (x10-3/µL)

N1 612 376
N2 160 188
N3 531 255
N4 309 206
N5 321 231
N6 262 227
N7 411 233
N8 196 184
N9 450 296
N10 756 261

Fig. 4 - Relationship between VEGF in lysed whole blood and platelet
count in ten healthy subjects.
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sociation between the vascular endothelial growth
factor (VEGF) concentration in lysed whole blood
and the platelet count (data in Table I) (4). The boot-
strap estimate of the confidence interval is computed
by running the SAS macros %BOOT and %BOOTCI
to perform the Bias Corrected and Accelerated (BCa)
method on 1000 bootstrap samples. The macros are
available in the file jackboot.sas, which can be
freely downloaded at  the web si te ht tp: / /
ftp.sas.com/techsup/download/stat/ (8). 
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/* ********************************************************************/
/* Input the data of Table I                                                   */
/* ********************************************************************/

data aa; input VEGF PLATELET; cards;
612      376
160      188
531      255
309      206
321      231
262      227
411      233
196      184
450      296
756      261
;
run;

/* ********************************************************************/
/* Include and submit the macros in the file jackboot.sas                     */
/* ********************************************************************/    

%include 'C:\ijbm\jackboot.sas';  run;

/* ********************************************************************/
/* write and submit the macro %ANALYZE for Spearman correlation    */               
/* ********************************************************************/

%macro analyze(data=,out=);
proc corr spearman noprint data=&data

outs=&out(where=(_type_='CORR' & _name_='VEGF')
rename=(PLATELET=corr)
keep=PLATELET _type_ _name_ &by);

var VEGF PLATELET;
%bystmt;

run;
%mend;

/* ********************************************************************/
/* Execute the macro %BOOT                                                          */
/* ********************************************************************/

%boot(data=aa,
samples=1000,
residual=,
equation=,
size=,
balanced=,
random=0,
stat=CORR,
id=,
biascorr=1,
alpha=.05,
print=1,
chart=1
)

/* ********************************************************************/
/* Execute the macro %BOOTCI                                                       */
/* ********************************************************************/

%bootci(
method=BCa,
stat=CORR,
student=,
id=,
alpha=.05,
print=1
)

/* ********************************************************************/
/* Print the approximate lower (ALCL) and upper (AUCL) limits of the */
/* BCa confidence interval */
/* ********************************************************************/

proc print data=bootci; var alcl aucl; run;


